Publications

Results 351–400 of 9,998

Search results

Jump to search filters

Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) (Final Report)

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She'Ifa

This report summarizes the activities performed as part of the Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand Challenge LDRD project. We provide an overview of the research done in this project, including work on cyber emulation, uncertainty quantification, and optimization. We present examples of integrated analyses performed on two case studies: a network scanning/detection study and a malware command and control study. We highlight the importance of experimental workflows and list references of papers and presentations developed under this project. We outline lessons learned and suggestions for future work.

More Details

Predictive Data-driven Platform for Subsurface Energy Production

Yoon, Hongkyu Y.; Verzi, Stephen J.; Cauthen, Katherine R.; Musuvathy, Srideep M.; Melander, Darryl J.; Norland, Kyle; Morales, Adriana M.; Lee, Jonghyun; Sun, Alexander

Subsurface energy activities such as unconventional resource recovery, enhanced geothermal energy systems, and geologic carbon storage require fast and reliable methods to account for complex, multiphysical processes in heterogeneous fractured and porous media. Although reservoir simulation is considered the industry standard for simulating these subsurface systems with injection and/or extraction operations, reservoir simulation requires spatio-temporal “Big Data” into the simulation model, which is typically a major challenge during model development and computational phase. In this work, we developed and applied various deep neural network-based approaches to (1) process multiscale image segmentation, (2) generate ensemble members of drainage networks, flow channels, and porous media using deep convolutional generative adversarial network, (3) construct multiple hybrid neural networks such as convolutional LSTM and convolutional neural network-LSTM to develop fast and accurate reduced order models for shale gas extraction, and (4) physics-informed neural network and deep Q-learning for flow and energy production. We hypothesized that physicsbased machine learning/deep learning can overcome the shortcomings of traditional machine learning methods where data-driven models have faltered beyond the data and physical conditions used for training and validation. We improved and developed novel approaches to demonstrate that physics-based ML can allow us to incorporate physical constraints (e.g., scientific domain knowledge) into ML framework. Outcomes of this project will be readily applicable for many energy and national security problems that are particularly defined by multiscale features and network systems.

More Details

Propagation of a Stress Pulse in a Heterogeneous Elastic Bar

Journal of Peridynamics and Nonlocal Modeling

Silling, Stewart A.

The propagation of a wave pulse due to low-speed impact on a one-dimensional, heterogeneous bar is studied. Due to the dispersive character of the medium, the pulse attenuates as it propagates. This attenuation is studied over propagation distances that are much longer than the size of the microstructure. A homogenized peridynamic material model can be calibrated to reproduce the attenuation and spreading of the wave. The calibration consists of matching the dispersion curve for the heterogeneous material near the limit of long wavelengths. It is demonstrated that the peridynamic method reproduces the attenuation of wave pulses predicted by an exact microstructural model over large propagation distances.

More Details

ERAS: Enabling the Integration of Real-World Intellectual Properties (IPs) in Architectural Simulators

Nema, Shubham; Razdan, Rohin; Rodrigues, Arun; Hemmert, Karl S.; Voskuilen, Gwendolyn R.; Adak, Debratim; Hammond, Simon D.; Awad, Amro; Hughes, Clayton H.

Sandia National Laboratories is investigating scalable architectural simulation capabilities with a focus on simulating and evaluating highly scalable supercomputers for high performance computing applications. There is a growing demand for RTL model integration to provide the capability to simulate customized node architectures and heterogeneous systems. This report describes the first steps integrating the ESSENTial Signal Simulation Enabled by Netlist Transforms (ESSENT) tool with the Structural Simulation Toolkit (SST). ESSENT can emit C++ models from models written in FIRRTL to automatically generate components. The integration workflow will automatically generate the SST component and necessary interfaces to ’plug’ the ESSENT model into the SST framework.

More Details

Sphynx: A parallel multi-GPU graph partitioner for distributed-memory systems

Parallel Computing

Acer, Seher A.; Boman, Erik G.; Glusa, Christian A.; Rajamanickam, Sivasankaran R.

Graph partitioning has been an important tool to partition the work among several processors to minimize the communication cost and balance the workload. While accelerator-based supercomputers are emerging to be the standard, the use of graph partitioning becomes even more important as applications are rapidly moving to these architectures. However, there is no distributed-memory-parallel, multi-GPU graph partitioner available for applications. We developed a spectral graph partitioner, Sphynx, using the portable, accelerator-friendly stack of the Trilinos framework. In Sphynx, we allow using different preconditioners and exploit their unique advantages. We use Sphynx to systematically evaluate the various algorithmic choices in spectral partitioning with a focus on the GPU performance. We perform those evaluations on two distinct classes of graphs: regular (such as meshes, matrices from finite element methods) and irregular (such as social networks and web graphs), and show that different settings and preconditioners are needed for these graph classes. The experimental results on the Summit supercomputer show that Sphynx is the fastest alternative on irregular graphs in an application-friendly setting and obtains a partitioning quality close to ParMETIS on regular graphs. When compared to nvGRAPH on a single GPU, Sphynx is faster and obtains better balance and better quality partitions. Sphynx provides a good and robust partitioning method across a wide range of graphs for applications looking for a GPU-based partitioner.

More Details

White paper on Verification and Validation for Cyber Emulation Models

Swiler, Laura P.

All disciplines that use models to predict the behavior of real-world systems need to determine the accuracy of the models’ results. Techniques for verification, validation, and uncertainty quantification (VVUQ) focus on improving the credibility of computational models and assessing their predictive capability. VVUQ emphasizes rigorous evaluation of models and how they are applied to improve understanding of model limitations and quantify the accuracy of model predictions.

More Details

Sensitivity Analysis Comparisons on Geologic Case Studies: An International Collaboration

Swiler, Laura P.; Becker, Dirk-Alexander; Brooks, Dusty M.; Govaerts, Joan; Koskinen, Lasse; Plischke, Elmar; Rohlig, Klaus-Jurgen; Saveleva, Elena; Spiessl, Sabine M.; Stein, Emily S.; Svitelman, Valentina

Over the past four years, an informal working group has developed to investigate existing sensitivity analysis methods, examine new methods, and identify best practices. The focus is on the use of sensitivity analysis in case studies involving geologic disposal of spent nuclear fuel or nuclear waste. To examine ideas and have applicable test cases for comparison purposes, we have developed multiple case studies. Four of these case studies are presented in this report: the GRS clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. We present the different sensitivity analysis methods investigated by various groups, the results obtained by different groups and different implementations, and summarize our findings.

More Details

Emergent Recursive Multiscale Interaction in Complex Systems

Naugle, Asmeret B.; Doyle, Casey L.; Sweitzer, Matthew; Rothganger, Fredrick R.; Verzi, Stephen J.; Lakkaraju, Kiran L.; Kittinger, Robert; Bernard, Michael L.; Chen, Yuguo; Loyal, Joshua; Mueen, Abdullah

This project studied the potential for multiscale group dynamics in complex social systems, including emergent recursive interaction. Current social theory on group formation and interaction focuses on a single scale (individuals forming groups) and is largely qualitative in its explanation of mechanisms. We combined theory, modeling, and data analysis to find evidence that these multiscale phenomena exist, and to investigate their potential consequences and develop predictive capabilities. In this report, we discuss the results of data analysis showing that some group dynamics theory holds at multiple scales. We introduce a new theory on communicative vibration that uses social network dynamics to predict group life cycle events. We discuss a model of behavioral responses to the COVID-19 pandemic that incorporates influence and social pressures. Finally, we discuss a set of modeling techniques that can be used to simulate multiscale group phenomena.

More Details

Physics-Based Optical Neuromorphic Classification

Leonard, Francois L.; Teeter, Corinne M.; Vineyard, Craig M.

Typical approaches to classify scenes from light convert the light field to electrons to perform the computation in the digital electronic domain. This conversion and downstream computational analysis require significant power and time. Diffractive neural networks have recently emerged as unique systems to classify optical fields at lower energy and high speeds. Previous work has shown that a single layer of diffractive metamaterial can achieve high performance on classification tasks. In analogy with electronic neural networks, it is anticipated that multilayer diffractive systems would provide better performance, but the fundamental reasons for the potential improvement have not been established. In this work, we present extensive computational simulations of two - layer diffractive neural networks and show that they can achieve high performance with fewer diffractive features than single layer systems.

More Details

Spatio-temporal Estimates of Disease Transmission Parameters for COVID-19 with a Fully-Coupled, County-Level Model of the United States

Cummings, Derek; Hart, William E.; Garcia-Carreras, Bernardo; Lanning, Carl D.; Lessler, Justin; Staid, Andrea S.

Sandia National Laboratories has developed a capability to estimate parameters of epidemiological models from case reporting data to support responses to the COVID-19 pandemic. A differentiating feature of this work is the ability to simultaneously estimate county-specific disease transmission parameters in a nation-wide model that considers mobility between counties. The approach is focused on estimating parameters in a stochastic SEIR model that considers mobility between model patches (i.e., counties) as well as additional infectious compartments. The inference engine developed by Sandia includes (1) reconstruction and (2) transmission parameter inference. Reconstruction involves estimating current population counts within each of the compartments in a modified SEIR model from reported case data. Reconstruction produces input for the inference formulations, and it provides initial conditions that can be used in other modeling and planning efforts. Inference involves the solution of a large-scale optimization problem to estimate the time profiles for the transmission parameters in each county. These provide quantification of changes in the transmission parameter over time (e.g., due to impact of intervention strategies). This capability has been implemented in a Python-based software package, epi_inference, that makes extensive use of Pyomo [5] and IPOPT [10] to formulate and solve the inference formulations.

More Details

Beating random assignment for approximating quantum 2-local hamiltonian problems

Leibniz International Proceedings in Informatics, LIPIcs

Parekh, Ojas D.; Thompson, Kevin T.

The quantum k-Local Hamiltonian problem is a natural generalization of classical constraint satisfaction problems (k-CSP) and is complete for QMA, a quantum analog of NP. Although the complexity of k-Local Hamiltonian problems has been well studied, only a handful of approximation results are known. For Max 2-Local Hamiltonian where each term is a rank 3 projector, a natural quantum generalization of classical Max 2-SAT, the best known approximation algorithm was the trivial random assignment, yielding a 0.75-approximation. We present the first approximation algorithm beating this bound, a classical polynomial-time 0.764-approximation. For strictly quadratic instances, which are maximally entangled instances, we provide a 0.801 approximation algorithm, and numerically demonstrate that our algorithm is likely a 0.821-approximation. We conjecture these are the hardest instances to approximate. We also give improved approximations for quantum generalizations of other related classical 2-CSPs. Finally, we exploit quantum connections to a generalization of the Grothendieck problem to obtain a classical constant-factor approximation for the physically relevant special case of strictly quadratic traceless 2-Local Hamiltonians on bipartite interaction graphs, where a inverse logarithmic approximation was the best previously known (for general interaction graphs). Our work employs recently developed techniques for analyzing classical approximations of CSPs and is intended to be accessible to both quantum information scientists and classical computer scientists.

More Details

Understanding the Design Space of Sparse/Dense Multiphase Dataflows for Mapping Graph Neural Networks on Spatial Accelerators

Garg, Raveesh; Qin, Eric; Martinez, Francisco M.; Guirado, Robert; Jain, Akshay; Abadal, Sergi; Abellan, Jose L.; Acacio, Manuel E.; Alarcon, Eduard; Rajamanickam, Sivasankaran R.; Krishna, Tushar

Graph Neural Networks (GNNs) have garnered a lot of recent interest because of their success in learning representations from graph-structured data across several critical applications in cloud and HPC. Owing to their unique compute and memory characteristics that come from an interplay between dense and sparse phases of computations, the emergence of reconfigurable dataflow (aka spatial) accelerators offers promise for acceleration by mapping optimized dataflows (i.e., computation order and parallelism) for both phases. The goal of this work is to characterize and understand the design-space of dataflow choices for running GNNs on spatial accelerators in order for the compilers to optimize the dataflow based on the workload. Specifically, we propose a taxonomy to describe all possible choices for mapping the dense and sparse phases of GNNs spatially and temporally over a spatial accelerator, capturing both the intra-phase dataflow and the inter-phase (pipelined) dataflow. Using this taxonomy, we do deep-dives into the cost and benefits of several dataflows and perform case studies on implications of hardware parameters for dataflows and value of flexibility to support pipelined execution.

More Details

FAIR DEAL Grand Challenge Overview

Allemang, Christopher R.; Anderson, Evan M.; Baczewski, Andrew D.; Bussmann, Ezra B.; Butera, Robert; Campbell, DeAnna M.; Campbell, Quinn C.; Carr, Stephen M.; Frederick, Esther; Gamache, Phillip G.; Gao, Xujiao G.; Grine, Albert D.; Gunter, Mathew M.; Halsey, Connor H.; Ivie, Jeffrey A.; Katzenmeyer, Aaron M.; Leenheer, Andrew J.; Lepkowski, William L.; Lu, Tzu-Ming L.; Mamaluy, Denis M.; Mendez Granado, Juan P.; Pena, Luis F.; Schmucker, Scott W.; Scrymgeour, David S.; Tracy, Lisa A.; Wang, George T.; Ward, Dan; Young, Steve M.

While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.

More Details

The Fingerprints of Stratospheric Aerosol Injection in E3SM

Wagman, Benjamin M.; Swiler, Laura P.; Chowdhary, Kamaljit S.; Hillman, Benjamin H.

The June 15, 1991 Mt. Pinatubo eruption is simulated in E3SM by injecting 10 Tg of SO2 gas in the stratosphere, turning off prescribed volcanic aerosols, and enabling E3SM to treat stratospheric volcanic aerosols prognostically. This experimental prognostic treatment of volcanic aerosols in the stratosphere results in some realistic behaviors (SO2 evolves into H2SO4 which heats the lower stratosphere), and some expected biases (H2SO4 aerosols sediment out of the stratosphere too quickly). Climate fingerprinting techniques are used to establish a Mt. Pinatubo fingerprint based on the vertical profile of temperature from the E3SMv1 DECK ensemble. By projecting reanalysis data and preindustrial simulations onto the fingerprint, the Mt. Pinatubo stratospheric heating anomaly is detected. Projecting the experimental prognostic aerosol simulation onto the fingerprint also results in a detectable heating anomaly, but, as expected, the duration is too short relative to reanalysis data.

More Details

Simulation of Low-Rm physics in complex geometries on GPUs with LGR

Zwick, David Z.; Ibanez-Granados, Daniel A.

Efficient modeling of low magnetic Reynolds number (low-Rm) magnetohydrodynamics is often challenging and requires the implementation of innovative techniques to avoid key barriers experienced with prior approaches. We detail a new paradigm for first-principles simulation of the solution to the low-Rm governing equations in complex geometries. As a result of a number of innovative numerical advances, the next-generation GPU (graphics processing unit) accelerated physics code LGR has been successfully applied to the modeling of exploding wire problems.

More Details

Causal Evaluations for Identifying Differences between Observations and Earth System Models

Nichol, Jeffrey N.; Peterson, Matthew G.; Peterson, Kara J.

We use a nascent data-driven causal discovery method to find and compare causal relationships in observed data and climate model output. We consider ten different features in the Arctic climate collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data. In identifying and analyzing the resulting causal networks, we make meaningful comparisons between observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI causal discovery algorithm to Arctic climate data, that there are noticeable similarities between observed and simulated Arctic climate dynamics, and that further work is needed to identify specific areas for improvement to better align models with natural observations.

More Details

Leveraging Spin-Orbit Coupling in Ge/SiGe Heterostructures for Quantum Information Transfer

Bretz-Sullivan, Terence M.; Brickson, Mitchell I.; Foster, Natalie D.; Hutchins-Delgado, Troy A.; Lewis, Rupert; Lu, Tzu-Ming L.; Miller, Andrew J.; Srinivasa, Vanita; Tracy, Lisa A.; Wanke, Michael W.; Luhman, Dwight R.

Hole spin qubits confined to lithographically - defined lateral quantum dots in Ge/SiGe heterostructures show great promise. On reason for this is the intrinsic spin - orbit coupling that allows all - electric control of the qubit. That same feature can be exploited as a coupling mechanism to coherently link spin qubits to a photon field in a superconducting resonator, which could, in principle, be used as a quantum bus to distribute quantum information. The work reported here advances the knowledge and technology required for such a demonstration. We discuss the device fabrication and characterization of different quantum dot designs and the demonstration of single hole occupation in multiple devices. Superconductor resonators fabricated using an outside vendor were found to have adequate performance and a path toward flip-chip integration with quantum devices is discussed. The results of an optical study exploring aspects of using implanted Ga as quantum memory in a Ge system are presented.

More Details

Efficient flexible characterization of quantum processors with nested error models

New Journal of Physics

Nielsen, Erik N.; Rudinger, Kenneth M.; Proctor, Timothy J.; Young, Kevin C.; Blume-Kohout, Robin J.

We present a simple and powerful technique for finding a good error model for a quantum processor. The technique iteratively tests a nested sequence of models against data obtained from the processor, and keeps track of the best-fit model and its wildcard error (a metric of the amount of unmodeled error) at each step. Each best-fit model, along with a quantification of its unmodeled error, constitutes a characterization of the processor. We explain how quantum processor models can be compared with experimental data and to each other. We demonstrate the technique by using it to characterize a simulated noisy two-qubit processor.

More Details

A New Route to Quantum-Scale Structures through a Novel Enhanced Germanium Diffusion Mechanism

Wang, George T.; Lu, Ping L.; Sapkota, Keshab R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schultz, Peter A.; Jones, Kevin S.; Turner, Emily M.; Sharrock, Chappel J.; Law, Mark E.; Yang, Hongbin

This project sought to develop a fundamental understanding of the mechanisms underlying a newly observed enhanced germanium (Ge) diffusion process in silicon germanium (SiGe) semiconductor nanostructures during thermal oxidation. Using a combination of oxidationdiffusion experiments, high resolution imaging, and theoretical modeling, a model for the enhanced Ge diffusion mechanism was proposed. Additionally, a nanofabrication approach utilizing this enhanced Ge diffusion mechanism was shown to be applicable to arbitrary 3D shapes, leading to the fabrication of stacked silicon quantum dots embedded in SiGe nanopillars. A new wet etch-based method for preparing 3D nanostructures for highresolution imaging free of obscuring material or damage was also developed. These results enable a new method for the controlled and scalable fabrication of on-chip silicon nanostructures with sub-10 nm dimensions needed for next generation microelectronics, including low energy electronics, quantum computing, sensors, and integrated photonics.

More Details

Critical Infrastructure Decision-Making under Long-Term Climate Hazard Uncertainty: The Need for an Integrated, Multidisciplinary Approach

Staid, Andrea S.; Fleming Lindsley, Elizabeth S.; Gunda, Thushara G.; Jackson, Nicole D.

U.S. critical infrastructure assets are often designed to operate for decades, and yet long-term planning practices have historically ignored climate change. With the current pace of changing operational conditions and severe weather hazards, research is needed to improve our ability to translate complex, uncertain risk assessment data into actionable inputs to improve decision-making for infrastructure planning. Decisions made today need to explicitly account for climate change – the chronic stressors, the evolution of severe weather events, and the wide-ranging uncertainties. If done well, decision making with climate in mind will result in increased resilience and decreased impacts to our lives, economies, and national security. We present a three-tier approach to create the research products needed in this space: bringing together climate projection data, severe weather event modeling, asset-level impacts, and contextspecific decision constraints and requirements. At each step, it is crucial to capture uncertainties and to communicate those uncertainties to decision-makers. While many components of the necessary research are mature (i.e., climate projection data), there has been little effort to develop proven tools for long-term planning in this space. The combination of chronic and acute stressors, spatial and temporal uncertainties, and interdependencies among infrastructure sectors coalesce into a complex decision space. By applying known methods from decision science and data analysis, we can work to demonstrate the value of an interdisciplinary approach to climate-hazard decision making for longterm infrastructure planning.

More Details

ASCEND: Asymptotically compatible strong form foundations for nonlocal discretization

Trask, Nathaniel A.; D'Elia, Marta D.; Littlewood, David J.; Silling, Stewart A.; Trageser, Jeremy T.; Tupek, Michael R.

Nonlocal models naturally handle a range of physics of interest to SNL, but discretization of their underlying integral operators poses mathematical challenges to realize the accuracy and robustness commonplace in discretization of local counterparts. This project focuses on the concept of asymptotic compatibility, namely preservation of the limit of the discrete nonlocal model to a corresponding well-understood local solution. We address challenges that have traditionally troubled nonlocal mechanics models primarily related to consistency guarantees and boundary conditions. For simple problems such as diffusion and linear elasticity we have developed complete error analysis theory providing consistency guarantees. We then take these foundational tools to develop new state-of-the-art capabilities for: lithiation-induced failure in batteries, ductile failure of problems driven by contact, blast-on-structure induced failure, brittle/ductile failure of thin structures. We also summarize ongoing efforts using these frameworks in data-driven modeling contexts. This report provides a high-level summary of all publications which followed from these efforts.

More Details
Results 351–400 of 9,998
Results 351–400 of 9,998