With the rapid proliferation of additive manufacturing and 3D printing technologies, architected cellular solids including truss-like 3D lattice topologies offer the opportunity to program the effective material response through topological design at the mesoscale. The present report summarizes several of the key findings from a 3-year Laboratory Directed Research and Development Program. The program set out to explore novel lattice topologies that can be designed to control, redirect, or dissipate energy from one or multiple insult environments relevant to Sandia missions, including crush, shock/impact, vibration, thermal, etc. In the first 4 sections, we document four novel lattice topologies stemming from this study: coulombic lattices, multi-morphology lattices, interpenetrating lattices, and pore-modified gyroid cellular solids, each with unique properties that had not been achieved by existing cellular/lattice metamaterials. The fifth section explores how unintentional lattice imperfections stemming from the manufacturing process, primarily sur face roughness in the case of laser powder bed fusion, serve to cause stochastic response but that in some cases such as elastic response the stochastic behavior is homogenized through the adoption of lattices. In the sixth section we explore a novel neural network screening process that allows such stocastic variability to be predicted. In the last three sections, we explore considerations of computational design of lattices. Specifically, in section 7 using a novel generative optimization scheme to design novel pareto-optimal lattices for multi-objective environments. In section 8, we use computational design to optimize a metallic lattice structure to absorb impact energy for a 1000 ft/s impact. And in section 9, we develop a modified micromorphic continuum model to solve wave propagation problems in lattices efficiently.
Although many software teams across the laboratories comply with yearly software quality engineering (SQE) assessments, the practice of introducing quality into each phase of the software lifecycle, or the team processes, may vary substantially. Even with the support of a quality engineer, many teams struggle to adapt and right-size software engineering best practices in quality to fit their context, and these activities aren’t framed in a way that motivates teams to take action. In short, software quality is often a “check the box for compliance” activity instead of a cultural practice that both values software quality and knows how to achieve it. In this report, we present the results of our 6600 VISTA Innovation Tournament project, "Incentivizing and Motivating High Confidence and Research Software Teams to Adopt the Practice of Quality." We present our findings and roadmap for future work based on 1) a rapid review of relevant literature, 2) lessons learned from an internal design thinking workshop, and 3) an external Collegeville 2021 workshop. These activities provided an opportunity for team ideation and community engagement/feedback. Based on our findings, we believe a coordinated effort (e.g. strategic communication campaign) aimed at diffusing the innovation of the practice of quality across Sandia National Laboratories could over time effect meaningful organizational change. As such, our roadmap addresses strategies for motivating and incentivizing individuals ranging from early career to seasoned software developers/scientists.
The final review for the FY21 Advanced Simulation and Computing (ASC) Computational Systems and Software Environments (CSSE) L2 Milestone #7840 was conducted on August 25th, 2021 at Sandia National Laboratories in Albuquerque, New Mexico. The review committee/panel unanimously agreed that the milestone has been successfully completed, exceeding expectations on several of the key deliverables.
Abdelfattah, Ahmad; Anzt, Hartwig; Ayala, Alan; Boman, Erik G.; Carson, Erin C.; Cayrols, Sebastien; Cojean, Terry; Dongarra, Jack J.; Falgout, Rob; Gates, Mark; G, R\{U}Tzmacher; Higham, Nicholas J.; Kruger, Scott E.; Li, Sherry; Lindquist, Neil; Liu, Yang; Loe, Jennifer A.; Nayak, Pratik; Osei-Kuffuor, Daniel; Pranesh, Sri; Rajamanickam, Sivasankaran R.; Ribizel, Tobias; Smith, Bryce B.; Swirydowicz, Kasia; Thomas, Stephen J.; Tomov, Stanimire; Tsai, Yaohung M.; Yamazaki, Ichitaro Y.; Yang, Urike M.
Over the last year, the ECP xSDK-multiprecision effort has made tremendous progress in developing and deploying new mixed precision technology and customizing the algorithms for the hardware deployed in the ECP flagship supercomputers. The effort also has succeeded in creating a cross-laboratory community of scientists interested in mixed precision technology and now working together in deploying this technology for ECP applications. In this report, we highlight some of the most promising and impactful achievements of the last year. Among the highlights we present are: Mixed precision IR using a dense LU factorization and achieving a 1.8× speedup on Spock; results and strategies for mixed precision IR using a sparse LU factorization; a mixed precision eigenvalue solver; Mixed Precision GMRES-IR being deployed in Trilinos, and achieving a speedup of 1.4× over standard GMRES; compressed Basis (CB) GMRES being deployed in Ginkgo and achieving an average 1.4× speedup over standard GMRES; preparing hypre for mixed precision execution; mixed precision sparse approximate inverse preconditioners achieving an average speedup of 1.2×; and detailed description of the memory accessor separating the arithmetic precision from the memory precision, and enabling memory-bound low precision BLAS 1/2 operations to increase the accuracy by using high precision in the computations without degrading the performance. We emphasize that many of the highlights presented here have also been submitted to peer-reviewed journals or established conferences, and are under peer-review or have already been published.
We present an approach for constructing a surrogate from ensembles of information sources of varying cost and accuracy. The multifidelity surrogate encodes connections between information sources as a directed acyclic graph, and is trained via gradient-based minimization of a nonlinear least squares objective. While the vast majority of state-of-the-art assumes hierarchical connections between information sources, our approach works with flexibly structured information sources that may not admit a strict hierarchy. The formulation has two advantages: (1) increased data efficiency due to parsimonious multifidelity networks that can be tailored to the application; and (2) no constraints on the training data—we can combine noisy, non-nested evaluations of the information sources. Finally, numerical examples ranging from synthetic to physics-based computational mechanics simulations indicate the error in our approach can be orders-of-magnitude smaller, particularly in the low-data regime, than single-fidelity and hierarchical multifidelity approaches.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign. This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-21SN01030404) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2021) (M3SF-21SN010304042). It presents high level objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY21, and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA Framework. This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: the GDSA Framework Development work package (SF-21SN01030405), the GDSA Repository Systems Analysis work package (SF-21SN01030406), and the GDSA PFLOTRAN Development work package (SF-21SN01030407). This report builds on developments reported in previous GDSA Framework milestones, particularly M3SF 20SN010304032.
The representation of material heterogeneity (also referred to as "spatial variation") plays a key role in the material failure simulation method used in ALEGRA. ALEGRA is an arbitrary Lagrangian-Eulerian shock and multiphysics code developed at Sandia National Laboratories and contains several methods for incorporating spatial variation into simulations. A desirable property of a spatial variation method is that it should produce consistent stochastic behavior regardless of the mesh used (a property referred to as "mesh independence"). However, mesh dependence has been reported using the Weibull distribution with ALEGRA's spatial variation method. This report describes efforts towards providing additional insight into both the theory and numerical experiments investigating such mesh dependence. In particular, we have implemented a discrete minimum order statistic model with properties that are theoretically mesh independent.
Cyber testbeds provide an important mechanism for experimentally evaluating cyber security performance. However, as an experimental discipline, reproducible cyber experimentation is essential to assure valid, unbiased results. Even minor differences in setup, configuration, and testbed components can have an impact on the experiments, and thus, reproducibility of results. This paper documents a case study in reproducing an earlier emulation study, with the reproduced emulation experiment conducted by a different research group on a different testbed. We describe lessons learned as a result of this process, both in terms of the reproducibility of the original study and in terms of the different testbed technologies used by both groups. This paper also addresses the question of how to compare results between two groups' experiments, identifying candidate metrics for comparison and quantifying the results in this reproduction study.
In each of our brains, 86 billion neurons work in parallel, processing inputs from senses and memories to produce the many feats of human cognition. The brains of other creatures are less broadly capable, but those animals often exhibit innate aptitudes for particular tasks, abilities honed by millions of years of evolution.
Nonlocal models, including peridynamics, often use integral operators that embed lengthscales in their definition. However, the integrands in these operators are difficult to define from the data that are typically available for a given physical system, such as laboratory mechanical property tests. In contrast, molecular dynamics (MD) does not require these integrands, but it suffers from computational limitations in the length and time scales it can address. To combine the strengths of both methods and to obtain a coarse-grained, homogenized continuum model that efficiently and accurately captures materials’ behavior, we propose a learning framework to extract, from MD data, an optimal Linear Peridynamic Solid (LPS) model as a surrogate for MD displacements. To maximize the accuracy of the learnt model we allow the peridynamic influence function to be partially negative, while preserving the well-posedness of the resulting model. To achieve this, we provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions and develop a constrained optimization algorithm that minimizes the equation residual while enforcing such solvability conditions. This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training. We illustrate the efficacy of the proposed approach with several numerical tests for single layer graphene. Our two-dimensional tests show the robustness of the proposed algorithm on validation data sets that include thermal noise, different domain shapes and external loadings, and discretizations substantially different from the ones used for training.
MTTKRP is the bottleneck operation in algorithms used to compute the CP tensor decomposition. For sparse tensors, utilizing the compressed sparse fibers (CSF) storage format and the CSF-oriented MTTKRP algorithms is important for both memory and computational efficiency on distributed-memory architectures. Existing intelligent tensor partitioning models assume the computational cost of MTTKRP to be proportional to the total number of nonzeros in the tensor. However, this is not the case for the CSF-oriented MTTKRP on distributed-memory architectures. We outline two deficiencies of nonzero-based intelligent partitioning models when CSF-oriented MTTKRP operations are performed locally: failure to encode processors' computational loads and increase in total computation due to fiber fragmentation. We focus on existing fine-grain hypergraph model and propose a novel vertex weighting scheme that enables this model encode correct computational loads of processors. We also propose to augment the fine-grain model by fiber nets for reducing the increase in total computational load via minimizing fiber fragmentation. In this way, the proposed model encodes minimizing the load of the bottleneck processor. Parallel experiments with real-world sparse tensors on up to 1024 processors prove the validity of the outlined deficiencies and demonstrate the merit of our proposed improvements in terms of parallel runtimes.
Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion and emissions. In order to make automated vehicles commercially viable, a reliable and highperformance vehicle-based computing platform that meets ever-increasing computational demands will be key. Given the state of existing digital computing technology, designers will face significant challenges in meeting the needs of highly automated vehicles without exceeding thermal constraints or consuming a large portion of the energy available on vehicles, thus reducing range between charges or refills. The accompanying increases in energy for AV use will place increased demand on energy production and distribution infrastructure, which also motivates increasing computational energy efficiency.
The generalized singular value decomposition (GSVD) is a valuable tool that has many applications in computational science. However, computing the GSVD for large-scale problems is challenging. Motivated by applications in hyper-differential sensitivity analysis (HDSA), we propose new randomized algorithms for computing the GSVD which use randomized subspace iteration and weighted QR factorization. Detailed error analysis is given which provides insight into the accuracy of the algorithms and the choice of the algorithmic parameters. We demonstrate the performance of our algorithms on test matrices and a large-scale model problem where HDSA is used to study subsurface flow.