The June 15, 1991 Mt. Pinatubo eruption is simulated in E3SM by injecting 10 Tg of SO2 gas in the stratosphere, turning off prescribed volcanic aerosols, and enabling E3SM to treat stratospheric volcanic aerosols prognostically. This experimental prognostic treatment of volcanic aerosols in the stratosphere results in some realistic behaviors (SO2 evolves into H2SO4 which heats the lower stratosphere), and some expected biases (H2SO4 aerosols sediment out of the stratosphere too quickly). Climate fingerprinting techniques are used to establish a Mt. Pinatubo fingerprint based on the vertical profile of temperature from the E3SMv1 DECK ensemble. By projecting reanalysis data and preindustrial simulations onto the fingerprint, the Mt. Pinatubo stratospheric heating anomaly is detected. Projecting the experimental prognostic aerosol simulation onto the fingerprint also results in a detectable heating anomaly, but, as expected, the duration is too short relative to reanalysis data.
In many aerospace applications, it is critical to be able to model fluid-structure interactions. In particular, correctly predicting the power spectral density of pressure fluctuations at surfaces can be important for assessing potential resonances and failure modes. Current turbulence modeling methods, such as wall-modeled Large Eddy Simulation and Detached Eddy Simulation, cannot reliably predict these pressure fluctuations for many applications of interest. The focus of this paper is on efforts to use data-driven machine learning methods to learn correction terms for the wall pressure fluctuation spectrum. In particular, the non-locality of the wall pressure fluctuations in a compressible boundary layer is investigated using random forests and neural networks trained and evaluated on Direct Numerical Simulation data.
We investigate a novel application of deep neural networks to modeling of errors in prediction of surface pressure fluctuations beneath a compressible, turbulent flow. In this context, the truth solution is given by Direct Numerical Simulation (DNS) data, while the predictive model is a wall-modeled Large Eddy Simulation (LES). The neural network provides a means to map relevant statistical flow-features within the LES solution to errors in prediction of wall pressure spectra. We simulate a number of flat plate turbulent boundary layers using both DNS and wall-modeled LES to build up a database with which to train the neural network. We then apply machine learning techniques to develop an optimized neural network model for the error in terms of relevant flow features.
In this paper we propose a series of methodologies to address the problems in the NASA Langley Multidisciplinary UQ Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters in problem A, while variance-based global sensitivity analysis is proposed for problem B. For problems C and D we propose nested sampling methods for mixed aleatory-epistemic UQ.