Publications

Results 6876–6900 of 99,299

Search results

Jump to search filters

“Deep reinforcement learning for engineering design through topology optimization of elementally discretized design domains”

Materials and Design

Garland, Anthony; Brown, Nathan K.; Fadel, Georges M.; Li, Gang

Advances in machine learning algorithms and increased computational efficiencies give engineers new capabilities and tools to apply to engineering design. Machine learning models can approximate complex functions and, therefore, can be useful for various tasks in the engineering design workflow. This paper investigates using reinforcement learning (RL), a subset of machine learning that teaches an agent to complete a task through accumulating experiences in an interactive environment, to automate the designing of 2D discretized topologies. RL agents use past experiences to learn sequential sets of actions to best achieve some objective. In the proposed environment, an RL agent can make sequential decisions to design a topology by removing elements to best satisfy compliance minimization objectives. After each action, the agent receives feedback by evaluating how well the current topology satisfies the design objectives. After training, the agent was tasked with designing optimal topologies under various load cases. The agent's proposed designs had similar or better compliance minimization performance to those produced by traditional gradient-based topology optimization methods. These results show that a deep RL agent can learn generalized design strategies to satisfy multi-objective design tasks and, therefore, shows promise as a tool for arbitrarily complex design problems across many domains.

More Details

Analysis of the Spontaneous Emission Limited Linewidth of an Integrated III–V/SiN Laser

Laser and Photonics Reviews

Chow, Weng W.

This article describes a calculation of the spontaneous emission limited linewidth of a semiconductor laser consisting of hybrid or heterogeneously integrated, silicon and III–V intracavity components. Central to the approach are a) description of the multi-element laser cavity in terms of composite laser/free-space eigenmodes, b) use of multimode laser theory to treat mode competition and multiwave mixing, and c) incorporation of quantum-optical contributions to account for spontaneous emission effects. Application of the model is illustrated for the case of linewidth narrowing in an InAs quantum-dot laser coupled to a high- (Formula presented.) SiN cavity.

More Details

Medium-Scale Methanol Pool Fire Model Validation

Journal of Heat Transfer

Hubbard, Joshua A.; Kirsch, Jared; Hewson, John C.; Hansen, Michael A.; Domino, Stefan P.

Medium scale (30 cm diameter) methanol pool fires were simulated using the latest fire modeling suite implemented in Sierra/Fuego, a low Mach number multiphysics reacting flow code. The sensitivity of model outputs to various model parameters was studied with the objective of providing model validation. This work also assesses model performance relative to other recently published large eddy simulations (LES) of the same validation case. Two pool surface boundary conditions were simulated. The first was a prescribed fuel mass flux and the second used an algorithm to predict mass flux based on a mass and energy balance at the fuel surface. Gray gas radiation model parameters (absorption coefficients and gas radiation sources) were varied to assess radiant heat losses to the surroundings and pool surface. The radiation model was calibrated by comparing the simulated radiant fraction of the plume to experimental data. The effects of mesh resolution were also quantified starting with a grid resolution representative of engineering type fire calculations and then uniformly refining that mesh in the plume region. Simulation data were compared to experimental data collected at the University of Waterloo and the National Institute of Standards and Technology (NIST). Validation data included plume temperature, radial and axial velocities, velocity temperature turbulent correlations, velocity velocity turbulent correlations, radiant and convective heat fluxes to the pool surface, and plume radiant fraction. Additional analyses were performed in the pool boundary layer to assess simulated flame anchoring and the effect on convective heat fluxes. This work assesses the capability of the latest Fuego physics and chemistry model suite and provides additional insight into pool fire modeling for nonluminous, nonsooting flames.

More Details

Sierra/SD - User's Manual - 5.8

Foulk, James W.; Bunting, Gregory; Chen, Mark J.Y.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Joshi, Sidharth S.; Lindsay, Payton; Plews, Julia A.; Stevens, Brian; Vo, Johnathan

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details
Results 6876–6900 of 99,299
Results 6876–6900 of 99,299