Publications

Results 6601–6625 of 99,299

Search results

Jump to search filters

Recrystallization, melting, and erosion of dispersoid-strengthened tungsten materials during exposure to DIII-D plasmas

Kolasinski, Robert; Coburn, Jonathan D.; Truong, Dinh D.; Watkins, Jonathan; Abrams, Tyler; Fang, Z.Z.; Nygren, Richard; Leonard, Anthony; Ren, Jun; Wang, Huiqian; Whaley, Josh; Bykov, Igor; Glass, Fenton; Herfindal, Jeffrey; Hood, Ryan T.; Lasnier, Charles; Marini, Claudio; Mclean, Adam; Moser, Auna; Nishimoto, Ryan K.; Sugar, Joshua D.; Wilcox, Robert; York, Warren

Abstract not provided.

Analysis of the Spontaneous Emission Limited Linewidth of an Integrated III–V/SiN Laser

Laser and Photonics Reviews

Chow, Weng W.

This article describes a calculation of the spontaneous emission limited linewidth of a semiconductor laser consisting of hybrid or heterogeneously integrated, silicon and III–V intracavity components. Central to the approach are a) description of the multi-element laser cavity in terms of composite laser/free-space eigenmodes, b) use of multimode laser theory to treat mode competition and multiwave mixing, and c) incorporation of quantum-optical contributions to account for spontaneous emission effects. Application of the model is illustrated for the case of linewidth narrowing in an InAs quantum-dot laser coupled to a high- (Formula presented.) SiN cavity.

More Details

Enforcing detailed balance in the Borgnakke-Larsen redistribution method with temperature dependent relaxation models

Physics of Fluids

Echo, Zakari S.; Gallis, Michael A.

For decades, it has been observed that the commonly used Borgnakke-Larsen method for energy redistribution in Direct Simulation Monte Carlo codes fails to satisfy the principle of detailed balance when coupled to a wide variety of temperature dependent relaxation models, while seemingly satisfying detailed balance when coupled to others. Many attempts have been made to remedy the issue, yet much ambiguity remains, and no consensus appears in the literature regarding the root cause of the intermittent compatibility of the Borgnakke-Larsen method with temperature dependent relaxation models. This paper alleviates that ambiguity by presenting a rigorous theoretical derivation of the Borgnakke-Larsen method's requirement for satisfying detailed balance. Specifically, it is shown that the Borgnakke-Larsen method maintains detailed balance if and only if the probability of internal-energy exchange during a collision depends only on collision invariants (e.g., total energy). The consequences of this result are explored in the context of several published definitions of relaxation temperature, including translational, total, and cell-averaged temperatures. Of particular note, it is shown that cell-averaged temperatures, which have been widely discussed in the literature as a way to ensure equilibrium is reached, also fail in a similar, although less dramatic, fashion when the aforementioned relationship is not enforced. The developed theory can be used when implementing existing or new relaxation models and will ensure that detailed balance is satisfied.

More Details

Medium-Scale Methanol Pool Fire Model Validation

Journal of Heat Transfer

Hubbard, Joshua A.; Kirsch, Jared; Hewson, John C.; Hansen, Michael A.; Domino, Stefan P.

Medium scale (30 cm diameter) methanol pool fires were simulated using the latest fire modeling suite implemented in Sierra/Fuego, a low Mach number multiphysics reacting flow code. The sensitivity of model outputs to various model parameters was studied with the objective of providing model validation. This work also assesses model performance relative to other recently published large eddy simulations (LES) of the same validation case. Two pool surface boundary conditions were simulated. The first was a prescribed fuel mass flux and the second used an algorithm to predict mass flux based on a mass and energy balance at the fuel surface. Gray gas radiation model parameters (absorption coefficients and gas radiation sources) were varied to assess radiant heat losses to the surroundings and pool surface. The radiation model was calibrated by comparing the simulated radiant fraction of the plume to experimental data. The effects of mesh resolution were also quantified starting with a grid resolution representative of engineering type fire calculations and then uniformly refining that mesh in the plume region. Simulation data were compared to experimental data collected at the University of Waterloo and the National Institute of Standards and Technology (NIST). Validation data included plume temperature, radial and axial velocities, velocity temperature turbulent correlations, velocity velocity turbulent correlations, radiant and convective heat fluxes to the pool surface, and plume radiant fraction. Additional analyses were performed in the pool boundary layer to assess simulated flame anchoring and the effect on convective heat fluxes. This work assesses the capability of the latest Fuego physics and chemistry model suite and provides additional insight into pool fire modeling for nonluminous, nonsooting flames.

More Details
Results 6601–6625 of 99,299
Results 6601–6625 of 99,299