Developing a pressure system to extract pressure coefficients of electrical measurement standards
Abstract not provided.
Abstract not provided.
Abstract not provided.
Exterior solar glaze was added to a 3 foot x 3 foot x 3 foot aluminum solar collector that had six triangular dimpled fins for enhanced heat transfer. The interior vertical wall on the south side was also dimpled. The solar glaze was added to compare its solar collection performance with unglazed solar collector experiments conducted at Sandia in 2021. The east, west, front, and top sides of the solar collector were encased with solar glaze glass. Because the solar incident heat on the north and bottom sides was minimal, they were insulated to retain the heat that was collected by the other four sides. The advantages of the solar glaze include the entrapment of more solar heat, as well as insulation from the wind. The disadvantages are that it increases the cost of the solar collector and has fragile structural properties when compared to the aluminum walls. Nevertheless, prior to conducting experiments with the glazed solar collector, it was not clear if the benefits outweighed the disadvantages. These issues are addressed herein, with the conclusion that the additional amount of heat collected by the glaze justifies the additional cost. The solar collector glaze design, experimental data, and costs and benefits are documented in this report.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO), including some updates from the previous report SAND2022-0215, to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.