Publications

Results 5426–5450 of 99,299

Search results

Jump to search filters

Fractal-Fin, Dimpled Solar Heat Collector with Solar Glaze

Rodriguez, Salvador B.

Exterior solar glaze was added to a 3 foot x 3 foot x 3 foot aluminum solar collector that had six triangular dimpled fins for enhanced heat transfer. The interior vertical wall on the south side was also dimpled. The solar glaze was added to compare its solar collection performance with unglazed solar collector experiments conducted at Sandia in 2021. The east, west, front, and top sides of the solar collector were encased with solar glaze glass. Because the solar incident heat on the north and bottom sides was minimal, they were insulated to retain the heat that was collected by the other four sides. The advantages of the solar glaze include the entrapment of more solar heat, as well as insulation from the wind. The disadvantages are that it increases the cost of the solar collector and has fragile structural properties when compared to the aluminum walls. Nevertheless, prior to conducting experiments with the glazed solar collector, it was not clear if the benefits outweighed the disadvantages. These issues are addressed herein, with the conclusion that the additional amount of heat collected by the glaze justifies the additional cost. The solar collector glaze design, experimental data, and costs and benefits are documented in this report.

More Details

Optimization of flow in additively manufactured porous columns with graded permeability

AIChE Journal

Salloum, Maher; Robinson, David

Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.

More Details

Computational Response Theory for Dynamics

Steyer, Andrew J.

Quantifying the sensitivity - how a quantity of interest (QoI) varies with respect to a parameter – and response – the representation of a QoI as a function of a parameter - of a computer model of a parametric dynamical system is an important and challenging problem. Traditional methods fail in this context since sensitive dependence on initial conditions implies that the sensitivity and response of a QoI may be ill-conditioned or not well-defined. If a chaotic model has an ergodic attractor, then ergodic averages of QoIs are well-defined quantities and their sensitivity can be used to characterize model sensitivity. The response theorem gives sufficient conditions such that the local forward sensitivity – the derivative with respect to a given parameter - of an ergodic average of a QoI is well-defined. We describe a method based on ergodic and response theory for computing the sensitivity and response of a given QoI with respect to a given parameter in a chaotic model with an ergodic and hyperbolic attractor. This method does not require computation of ensembles of the model with perturbed parameter values. The method is demonstrated and some of the computations are validated on the Lorenz 63 and Lorenz 96 models.

More Details

Solar-Thermal Ammonia Production Via a Nitride Looping Cycle [Slides]

Ambrosini, Andrea A.; Bush, Hagan E.; Ermanoski, Ivan; Gao, Xiang (Michael); Loutzenhizer, Peter; Miller, James E.; Stechel, Ellen B.

Solar Thermal Ammonia Production has the potential to synthesize ammonia in a green, renewable process that can greatly reduce the carbon footprint left by conventional Haber-Bosch reaction. Ternary nitrides in the family A3BxN (A=Co, Ni, Fe; B=Mo; x=2,3) have been identified as a potential candidate for NH3 production. Experiments with Co3Mo3N in Ammonia Synthesis Reactor demonstrate cyclable NH3 production from bulk nitride under pure H2. Production rates were fairly flat in all the reduction steps with no evident dependence on the consumed solid-state nitrogen, as would be expected from catalytic Mars-van Krevelen mechanism. Material can be re-nitridized under pure N2. Bulk nitrogen per reduction step average between 25 – 40% of the total solid-state nitrogen. Selectivity to NH3 stabilized at 55 – 60% per cycle. Production rates (NH3 and N2) become apparent above 600 °C at P(H2) = 0.5 – 2 bar. Optimal point of operation to keep selectivity high without compromising NH3 rates currently estimated at 650 °C and 1.5 - 2 bar. The next steps are to optimize production rates, examine effect of N2 addition in NH3 synthesis reaction, and test additional ternary nitrides.

More Details

Reviewing MACCS Capabilities for Assessing Tritium Releases to the Environment

Clavier, Kyle A.; Clayton, Daniel J.

Tritium has a unique physical and chemical behavior which causes it to be highly mobile in the environment. As it behaves similarly to hydrogen in the environment, it may also be readily incorporated into the water cycle and other biological processes. These factors and other environmental transformations may also cause the oxidation of an elemental tritium release, resulting in a multiple order of magnitude increase in dose coefficient and radiotoxicity. While source term development and understanding for advanced reactors are still underway, tritium may be a radionuclide of interest. It is thus important to understand how tritium moves through the environment and how the MACCS accident consequence code handles acute tritium releases in an accident scenario. Additionally, existing tritium models may have functionalities that could inform updates to MACCS to handle tritium. In this report tritium transport is reviewed and existing tritium models are summarized in view of potential updates to MACCS.

More Details

Computational Analysis of Coupled Geoscience Processes in Fractured and Deformable Media

Yoon, Hongkyu; Kucala, Alec; Chang, Kyung W.; Martinez, Mario J.; Foulk, James W.; Kadeethum, Teeratorn; Warren, Maria; Wilson, Jennifer E.; Broome, Scott T.; Stewart, Lauren K.; Estrada, Diana; Bouklas, Nicholas; Fuhg, Jan N.

Prediction of flow, transport, and deformation in fractured and porous media is critical to improving our scientific understanding of coupled thermal-hydrological-mechanical processes related to subsurface energy storage and recovery, nonproliferation, and nuclear waste storage. Especially, earth rock response to changes in pressure and stress has remained a critically challenging task. In this work, we advance computational capabilities for coupled processes in fractured and porous media using Sandia Sierra Multiphysics software through verification and validation problems such as poro-elasticity, elasto-plasticity and thermo-poroelasticity. We apply Sierra software for geologic carbon storage, fluid injection/extraction, and enhanced geothermal systems. We also significantly improve machine learning approaches through latent space and self-supervised learning. Additionally, we develop new experimental technique for evaluating dynamics of compacted soils at an intermediate scale. Overall, this project will enable us to systematically measure and control the earth system response to changes in stress and pressure due to subsurface energy activities.

More Details

A review of non-cognitive applications for neuromorphic computing

Neuromorphic Computing and Engineering

Aimone, James B.; Date, Prasanna; Fonseca-Guerra, Gabriel A.; Hamilton, Kathleen E.; Henke, Kyle; Kay, Bill; Kenyon, Garrett T.; Kulkarni, Shruti R.; Parsa, Maryam; Schuman, Catherine D.; Severa, William M.; Smith, J.D.

Though neuromorphic computers have typically targeted applications in machine learning and neuroscience (‘cognitive’ applications), they have many computational characteristics that are attractive for a wide variety of computational problems. In this work, we review the current state-of-the-art for non-cognitive applications on neuromorphic computers, including simple computational kernels for composition, graph algorithms, constrained optimization, and signal processing. We discuss the advantages of using neuromorphic computers for these different applications, as well as the challenges that still remain. The ultimate goal of this work is to bring awareness to this class of problems for neuromorphic systems to the broader community, particularly to encourage further work in this area and to make sure that these applications are considered in the design of future neuromorphic systems.

More Details

Fragmentation analysis of a bar with the Lip-field approach

Mechanics of Materials

Stershic, Andrew J.; Moes, Nicolas; Le, Benoit

The Lip-field approach was introduced in Moës and Chevaugeon (2021) as a new way to regularize softening material models. It was tested in 1D quasistatic in Moës and Chevaugeon (2021) and 2D quasistatic in Chevaugeon and Moës (2021): this paper extends it to 1D dynamics, on the challenging problem of dynamic fragmentation. The Lip-field approach formulates the mechanical problem to be solved as an optimization problem, where the incremental potential to be minimized is the non-regularized one. Spurious localization is prevented by imposing a Lipschitz constraint on the damage field. The displacement and damage field at each time step are obtained by a staggered algorithm, that is the displacement field is computed for a fixed damage field, then the damage field is computed for a fixed displacement field. Indeed, these two problems are convex, which is not the case of the global problem where the displacement and damage fields are sought at the same time. The incremental potential is obtained by equivalence with a cohesive zone model, which makes material parameters calibration simple. A non-regularized local damage equivalent to a cohesive zone model is also proposed. It is used as a reference for the Lip-field approach, without the need to implement displacement jumps. These approaches are applied to the brittle fragmentation of a 1D bar with randomly perturbed material properties to accelerate spatial convergence. Both explicit and implicit dynamic implementations are compared. Favorable comparison to several analytical, numerical and experimental references serves to validate the modeling approach.

More Details

Quantification of morphological change in materials based on image data utilizing machine learning techniques

Beste, Ariana; Bolintineanu, Dan S.; Bufford, Daniel C.

Computed tomography (CT) resolution has become high enough to monitor morphological changes due to aging in materials in long-term applications. We explored the utility of the critic of a generative adversarial network (GAN) to automatically detect such changes. The GAN was trained with images of pristine Pharmatose, which is used as a surrogate energetic material. It is important to note that images of the material with altered morphology were only used during the test phase. The GAN-generated images visually reproduced the microstructure of Pharmatose well, although some unrealistic particle fusion was seen. Calculated morphological metrics (volume fraction, interfacial line length, and local thickness) for the synthetic images also showed good agreement with the training data, albeit with signs of mode collapse in the interfacial line length. While the critic exposed changes in particle size, it showed limited ability to distinguish images by particle shape. The detection of shape differences was also a more challenging task for the selected morphological metrics that related to energetic material performance. We further tested the critic with images of aged Pharmatose. Subtle changes due to aging are difficult for the human analyst to detect. Both critic and morphological metrics analysis showed image differentiation.

More Details
Results 5426–5450 of 99,299
Results 5426–5450 of 99,299