Publications

Results 92101–92200 of 96,771

Search results

Jump to search filters

Verification of three-dimensional charge transport simulations using ion microbeams

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Horn, Kevin M.

Optically targeted, ion microbeams provide a useful means of exposing individual structures within an integrated circuit to ionizing radiation. With this tool, calibrated, low damage, charge collection spectra can be measured from specific circuit structures without preceding ion damage to the structure or surrounding circuitry. This paper presents comparisons of calibrated, low damage, ion microbeam-based charge collection measurements and three-dimensional, charge transport simulations of charge collection for isolated n-and p-channel field effect transistors under conducting and non-conducting bias conditions.

More Details

An optical probe for micromachine performance analysis

Dickey, Fred M.

Understanding the mechanisms that impact the performance of Microelectromechanical Systems (MEMS) is essential to the development of optimized designs and fabrication processes, as well as the qualification of devices for commercial applications. Silicon micromachines include engines that consist of orthogonally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {mu}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Optical techniques offer the potential for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. We describe the development of Micromachine Optical Probe (MOP) technology for the evaluation of micromachine performance. The MOP approach is based on the detection of optical signals scattered by the gear teeth or other physical structures. We present experimental results obtained with a prototype optical probe and micromachines developed at Sandia National Laboratories.

More Details

Statistical validation of system models

Proceedings of the Hawaii International Conference on System Sciences

Paez, Thomas L.

We frequently develop mathematical models of system behavior and sometimes use test data to help identify the parameters of the mathematical model. However, no general-purpose technique exists for formally, statistically judging the quality of a model. This paper suggests a formal statistical procedure for the validation of mathematical models of systems when data taken during operation of the system are available. The statistical validation procedure is based on the bootstrap, and it seeks to build a framework where a statistical test of hypothesis can be run to determine whether or not a mathematical model is an acceptable model of a system with regard to user-specified measures of system behavior. A numerical example is presented to demonstrate the application of the technique.

More Details

Check standard measurement and database software for microwave network analyzers

Conference Symposium & Workshop on Measurement Science

Duda, L.E.

Vector network analyzers provide a convenient way to measure scattering parameters of a variety of microwave devices. However, these instruments, unlike oscilloscopes for example, require a relatively high degree of user knowledge and expertise. Due to the complexity of the instrument and of the calibration process, there are many ways in which an incorrect measurement may be produced. We routinely use check standards to verify that the network analyzer is operating properly. In the past, these measurements were recorded manually and, sometimes, interpretation of the results was problematic. To aid our measurement assurance, a software program was developed to automatically measure a check standard and compare the new measurements with an historical database of measurements of the same device. The program acquires new measurement data from selected check standards, plots the new data against the mean and standard deviation of prior data for the check standard, and updates the database files for the check standard. The program is entirely menu-driven requiring little additional work by the user. This paper describes the function of the software, including a discussion of its capabilities, and the way in which the software is used in our lab. Finally, some examples are given showing how the software can detect potential measurement problems.

More Details

Bandwidth utilization maximization of scientific RF communication systems

Rey, D.

A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, was developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.

More Details

Electrokinetic removal of uranium from contaminated, unsaturated soils

Brady, Patrick V.

Electrokinetic remediation of uranium-contaminated soil was studied in a series of laboratory-scale experiments in test cells with identical geometry using quartz sand at approximately 10 percent moisture content. Uranium, when present in the soil system as an anionic complex, could be migrated through unsaturated soil using electrokinetics. The distance that the uranium migrated in the test cell was dependent upon the initial molar ratio of citrate to uranium used. Over 50 percent of the uranium was recovered from the test cells using the citrate and carbonate complexing agents over of period of 15 days. Soil analyses showed that the uranium remaining in the test cells had been mobilized and ultimately would have been extracted. Uranium extraction exceeded 90 percent in an experiment that was operated for 37 days. Over 70 percent of the uranium was removed from a Hanford waste sample over a 55 day operating period. Citrate and carbonate ligand utilization ratios required for removing 50 percent of the uranium from the uranium-contaminated sand systems were approximately 230 moles ligand per mole uranium and 1320 moles ligand per mole uranium for the waste. Modifying the operating conditions to increasing the residence time of the complexants is expected to improved the utilization efficiency of the complexing agent.

More Details

Final report for the Tera Computer TTI CRADA

Davidson, George S.

Tera Computer and Sandia National Laboratories have completed a CRADA, which examined the Tera Multi-Threaded Architecture (MTA) for use with large codes of importance to industry and DOE. The MTA is an innovative architecture that uses parallelism to mask latency between memories and processors. The physical implementation is a parallel computer with high cross-section bandwidth and GaAs processors designed by Tera, which support many small computation threads and fast, lightweight context switches between them. When any thread blocks while waiting for memory accesses to complete, another thread immediately begins execution so that high CPU utilization is maintained. The Tera MTA parallel computer has a single, global address space, which is appealing when porting existing applications to a parallel computer. This ease of porting is further enabled by compiler technology that helps break computations into parallel threads. DOE and Sandia National Laboratories were interested in working with Tera to further develop this computing concept. While Tera Computer would continue the hardware development and compiler research, Sandia National Laboratories would work with Tera to ensure that their compilers worked well with important Sandia codes, most particularly CTH, a shock physics code used for weapon safety computations. In addition to that important code, Sandia National Laboratories would complete research on a robotic path planning code, SANDROS, which is important in manufacturing applications, and would evaluate the MTA performance on this code. Finally, Sandia would work directly with Tera to develop 3D visualization codes, which would be appropriate for use with the MTA. Each of these tasks has been completed to the extent possible, given that Tera has just completed the MTA hardware. All of the CRADA work had to be done on simulators.

More Details

Micro-machined heat pipes in silicon MCM substrates

Palmer, David W.

Multichip modules (MCMs) containing power components need a substrate with excellent heat spreading capability to both avoid hot spots and to move dissipation heat toward the system heat sinks. Polycrystalline diamond is an excellent MCM heat spreading substrate but remains several orders of magnitude too expensive and somewhat more difficult to process than conventional mother-board materials. Today`s power MCMs concentrate on moderately priced silicon wafers and aluminum nitride ceramic with their improved thermal conductivity and good thermal expansion match to power semiconductor components in comparison to traditional alumina and printed wiring board materials. However, even silicon and AlN substrates are thermally challenged by designers needs. The authors report on the integral fabrication of micro-heat pipes embedded in silicon MCM substrates (5 x 5 cm) by the use of micromachined capillary wick structures and hermetic micro-cavities. This passive microstructure results in more than a 5 times improvement in heat spreading capability of the silicon MCM substrate over a large range of power densities and operating temperatures. Thus diamond-like cooling is possible at silicon prices.

More Details

LDRD final report on enhanced edge detection techniques for manufacturing quality control and materials characterization

Osbourn, Gordon C.

Detecting object boundaries in the presence of cast shadows is a difficult task for machine vision systems. A new edge detector is presented which responds to shadow penumbras and abrupt object edges with distinguishable signals. The detector requires the use of spatially extended light sources and sufficient video resolution to resolve the shadow penumbras of interest. Detection of high frequency noise is suppressed without requiring image-dependent adjustment of signal thresholds. The ability of the edge operator to distinguish shadow penumbras from abrupt object boundaries while suppressing responses to high frequency noise and texture is illustrated with idealized shadow and object edge intensity profiles. Selective detection of object boundaries in a video scene with a cast shadow has also been demonstrated with this operator.

More Details

A 3-d modular gripper design tool

Brown, R.G.

Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.

More Details

Modular weapon control unit

McGovney, Gary N.

The goal of the Modular Weapon Control Unit (MWCU) program was to design and develop a reconfigurable weapon controller (programmer/sequencer) that can be adapted to different weapon systems based on the particular requirements for that system. Programmers from previous systems are conceptually the same and perform similar tasks. Because of this commonality and the amount of re-engineering necessary with the advent of every new design, the idea of a modular, adaptable system has emerged. Also, the controller can be used in more than one application for a specific weapon system. Functionality has been divided into a Processor Module (PM) and an Input/Output Module (IOM). The PM will handle all operations that require calculations, memory, and timing. The IOM will handle interfaces to the rest of the system, input level shifting, output drive capability, and detection of interrupt conditions. Configuration flexibility is achieved in two ways. First, the operation of the PM is determined by a surface mount Read-Only Memory (ROM). Other surface-mount components can be added or neglected as necessary for functionality. Second, IOMs consist of configurable input buffers, configurable output drivers, and configurable interrupt generation. Further, these modules can be added singly or in groups to a Processor Module to achieve the required I/O configuration. The culmination of this LDRD was the building of both Processor Module and Input/Output Module. The MWCU was chosen as a test system to evaluate Low-Temperature Co-fired Ceramic (LTCC) technology, desirable for high component density and good thermal characteristics.

More Details

Fire characterization and object thermal response for a large flat plate adjacent to a large JP-4 fuel fire

Gritzo, Louis A.

A series of three 18.9 m diameter JP-4 pool fire experiments with a large (2.1 m X 4.6 m), flat plate calorimeter adjacent to the fuel pool were recently performed. The objectives of these experiments were to: (1) gain a better understanding of fire phenomenology, (2) provide empirical input parameter estimates for simplified, deterministic Risk Assessment Compatible Fire Models (RACFMs), (3) assist in continuing fire field model code validation and development, and (4) enhance the data base of fire temperature and heat flux to object distributions. Due to different wind conditions during each experiment, data were obtained for conditions where the plate was not engulfed, fully-engulfed and partially engulfed by the continuous flame zone. Results include the heat flux distribution to the plate and flame thermocouple temperatures in the vicinity of the plate and at two cross sections within the lower region of the continuous flame zone. The results emphasize the importance of radiative coupling (i.e. the cooling of the flames by a thermally massive object) and convective coupling (including object-induced turbulence and object/wind/flame interactions) in determining the heat flux from a fire to an object. The formation of a secondary flame zone on an object adjacent to a fire via convective coupling (which increases the heat flux by a factor of two) is shown to be possible when the object is located within a distance equal to the object width from the fire.

More Details

Wellbore enlargement investigation: Potential analogs to the Waste Isolation Pilot Plant during inadvertent intrusion of the repository

Boak, D.M.; Dotson, L.; Aguilar, R.

This study involved the evaluation and documentation of cases in which petroleum wellbores were enlarged beyond the nominal hole diameter as a consequence of erosion during exploratory drilling, particularly as a function of gas flow into the wellbore during blowout conditions. A primary objective was to identify analogs to potential wellbore enlargement at the Waste Isolation Pilot Plant (WIPP) during inadvertent human intrusion. Secondary objectives were to identify drilling scenarios associated with enlargement, determine the physical extent of enlargement, and establish the physical properties of the formation in which the enlargement occurred. No analogs of sufficient quality to establish quantitative limits on wellbore enlargement at the WIPP disposal system were identified. However, some information was obtained regarding the frequency of petroleum well blowouts and the likelihood that such blowouts would bridge downhole, self-limiting the surface release of disposal-system material. Further work would be necessary, however, to determine the conditions under which bridging could occur and the extent to which the bridging might be applicable to WIPP. In addition, data on casing sizes of petroleum boreholes in the WIPP vicinity support the use of a 12-{1/4} inch borehole size in WIPP performance assessment calculations. Finally, although data are limited, there was no evidence of significant wellbore enlargement in any of three blowouts that occur-red in wellbores in the Delaware Basin (South Culebra Bluff Unit No. 1, Energy Research and Development Administration (ERDA) 6, and WIPP 12).

More Details

Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

Hill, L.R.

This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.

More Details

Prediction of violent mechanochemical processes

Graham, R.A.

Energetic materials, such as high explosives, propellants and ballotechnics, are widely used as energy sources in the design of numerous devices, components and processes. Although most energetic materials are selected for safe operation, their high energy densities have the potential for inadvertent initiation and subsequent powerful energy transformations. This potential for damage or injury places a heavy burden on careful analysis of safety issues as part of the design process. As a result, considerable effort has been devoted to empirical testing of initiation conditions, and development of scientific models of initiation processes that have been incorporated into computer models for numerical simulation of initiation of reaction. Nevertheless, in many cases, there is still only rudimentary understanding of the processes of initiation. Mechanochemical processes are perhaps the least understood of the various excitation mechanisms. In these energy transformation processes mechanical stimuli lead directly to initiation and substantial reaction under conditions not thought to be capable of reaction. There are no established scientific models of the initiation of mechanochemical reactions in energetic materials. Mechanochemical reactions can be initiated by enhanced solid state chemical reactivity, changes in reactant configuration, and localization of initiation energy. Such solid state reactions are difficult to understand, either empirically or scientifically, as they are inherently nonequilibrium processes; scientific models currently used assume equilibrium thermochemical conditions and materials behaviors. The present work was undertaken as a first step in developing a scientific basis for prediction of the initiation of mechanochemical processes in high energy density solids.

More Details

Performance modeling of network data services

Haynes, R.A.

Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

More Details

Hierarchical high-performance storage system Testbed project at Sandia National Laboratories

Haynes, R.A.

The Hierarchical High-Performance Storage System (HPSS) Testbed project at Sandia National Laboratories was part of a research collaboration between industry, national research centers, and national laboratories to develop mass storage system software that would scale to meet the capacity and performance required by supercomputer and massively parallel computational environments. This report describes the software that was developed within this collaboration as a result of a cooperative research and development agreement between Sandia National Laboratories and International Business Machines (IBM) Corporation, Government Systems.

More Details

Use of high index substrates to enable dislocation filtering in large mismatch systems

Reno, J.L.

We report results in three areas of research relevant to the fabrication of a wide range of optoelectronic devices: The development of a new x-ray diffraction technique that can be used to rapidly determine the optimal period of a strained layer superlattice to maximize the dislocation filtering; The optimal MBE growth parameters for the growth of CdTe on GaAs(211); The determination of the relative efficiency of dislocation filtering in the (211) and (100) orientations; and The surface quality of InSb grown by MOCVD on InSb substrates is affected by the misorientation of the substrate.

More Details

Information model for on-site inspection system

Bray, Olin H.

This report describes the information model that was jointly developed as part of two FY93 LDRDs: (1) Information Integration for Data Fusion, and (2) Interactive On-Site Inspection System: An Information System to Support Arms Control Inspections. This report describes the purpose and scope of the two LDRD projects and reviews the prototype development approach, including the use of a GIS. Section 2 describes the information modeling methodology. Section 3 provides a conceptual data dictionary for the OSIS (On-Site Information System) model, which can be used in conjunction with the detailed information model provided in the Appendix. Section 4 discussions the lessons learned from the modeling and the prototype. Section 5 identifies the next steps--two alternate paths for future development. The long-term purpose of the On-Site Inspection LDRD was to show the benefits of an information system to support a wide range of on-site inspection activities for both offensive and defensive inspections. The database structure and the information system would support inspection activities under nuclear, chemical, biological, and conventional arms control treaties. This would allow a common database to be shared for all types of inspections, providing much greater cross-treaty synergy.

More Details

An electromagnetic induction method for underground target detection and characterization

Bartel, Lewis C.

An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect a drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.

More Details

Information integration for data fusion

Bray, Olin H.

Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

More Details

Mechanical properties of fractures from drillholes, UE25-NRG-4; USW-NRG-6; USW-NRG-7; USW-SD-9, at Yucca Mountain, Nevada

Olsson, William A.

Rock cores from drillholes UE25-NRG-4, USW-NRG-6, USW-NRG-7, and USW-SD-9 containing natural fractures were obtained from the Sample Management Facility at Yucca Mountain, Nevada. All recoverable fractures were sheared at constant normal stresses from 2.5 to 15 MPa, in the as-received condition (air-dry). Detailed profilometer data were collected from each fracture surface before testing. The tests yielded the normal closure as a function of normal stress, and the shear stress and dilation as functions of shear offset. The constitutive properties obtained from these stress-displacement relations were: normal stiffness, shear stiffness, shear strength, and dilation angle at peak shear stress. Shear strength plotted against normal stress for four thermomechanical units shows that friction angle varies from 370 to 460 and cohesion varies from 0.02 to 1.71 MPa.

More Details

Programming software for usability evaluation

Edwards, T.L.

This report provides an overview of the work completed for a portion of the User Interface Testbed for Technology Packaging (UseIT) project. The authors present software methods for programming systems to record and view interactions with a graphical user interface. A brief description of the human factors design process is presented. The software methods exploit features available in the X Window System and the operating system for Windows{trademark} 95 and Windows{trademark} NT{reg_sign}.

More Details

Fuel elements of thermionic converters

Hunter, Regina L.

Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

More Details

Optical diagnostics for turbulent and multiphase flows: Particle image velocimetry and photorefractive optics

O'Hern, Timothy J.

This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.

More Details

Rigid polyurethane foam (RPF) technology for Countermine (Sea) Program -- Phase 1

Woodfin, R.L.

This Phase 1 report documents the results of one of the subtasks that was initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of a foam that can neutralize mines and barriers and allow the safe passage of amphibious landing craft and vehicles was the objective of this subtask of the Sea Mine Countermeasures Technology program. This phase of the program concentrated on laboratory characterization of foam properties and field experiments with prefabricated foam blocks to determine the capability of RPF to adequately carry military traffic. It also established the flammability characteristics of the material under simulated operational conditions, extended the understanding of explosive cavity formation in RPF to include surface explosions, established the tolerance to typical military fluids, and the response to bullet impact. Many of the basic analyses required to establish the operational concept are reported. The initial field experiments were conducted at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM in November 1995 through February 1996.

More Details

Development of an active boring bar for increased chatter immunity

Proceedings of SPIE - The International Society for Optical Engineering

Redmond, James M.

The development and initial evaluation of a prototype boring bar feature active vibration control for increased chatter immunity is described. The significance of active damping both normal and tangential to the workpiece surface is evaluated, indicating the need for two axis control to ensure adequate performance over expected variations in tool mounting procedures. The prototype tool features a commercially available boring bar modified to accommodate four PZT stack actuators for two axis bending control. Measured closed-loop dynamics are combined with a computer model of the boring process to simulate increased metal removal rate and improved workpiece surface finish through application of feedback control.

More Details

Virtual actors and avatars in a flexible user-determined-scenario environment

Proceedings - Virtual Reality Annual International Symposium

Shawver, Dan M.

VRaptor, a VR system for situational training that uses trainer-defined scenarios is described. The trainee is represented by an avatar; the rest of the virtual world is populated by virtual actors, which are under the control of trainer-defined scripts. The scripts allow reactive behaviors, but the trainer can control the overall scenario. This type of training system may be very useful in supplementing physical training.

More Details

Establishing performance requirements of computer based systems subject to uncertainty

Proceedings of the International Symposium and Workshop on Engineering of Computer Based Systems

Robinson, David G.

The design of complex systems is difficult at best, but as a design becomes intensively dependent on the computer processing of external and internal information, the design process quickly borders chaos. This situation is exacerbated with the requirement that these systems operate with a minimal quantity of information, generally corrupted by noise, regarding the current state of the system. Establishing performance requirements for such systems is particularly difficult. This paper briefly sketches a general systems design approach with emphasis on the design of computer based decision processing systems subject to parameter and environmental variation. The approach will be demonstrated with application to an on-board diagnostic (OBD) system for automotive emissions systems now mandated by the state of California and the Federal Clean Air Act. The emphasis is on developing approach for establishing probabilistically based performance requirements for computer based systems.

More Details

Ensuring critical event sequences in high consequence computer based systems as inspired by path expressions

Proceedings of the International Symposium and Workshop on Engineering of Computer Based Systems

Kidd, Marie-Elena C.

The goal is to provide a high level of confidence that critical software driven event sequences are maintained in the face of hardware failures and harsh or unstable operating environments. The technical approach includes in-situ (embedded in the software) dynamic (run-time) fault management for ensuring critical event sequences in high consequence software. Our method is based on deriving a mathematical description of the critical software controlled event sequence, embedding check points and update points around the critical events into the target code, and adding a module that implements the functionality of the underlying mathematical model. This methodology is inspired by previous work in path expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed methods, and a discussion of the differences between the proposed methods and traditional path expression usage and implementation.

More Details

Z pinches as intense x-ray sources for high-energy density physics applications

Physics of Plasmas

Matzen, M.K.

Fast Z-pinch implosions can efficiently convert the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator [R. B. Spielman et al., in Proceedings of the 2nd International Conference on Dense Z Pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories, for example, currents of 6–8 MA with a rise time of less than 50 ns are driven through cylindrically symmetric loads, producing implosion velocities as high as [formula omitted] and x-ray energies exceeding 400 kJ. Hydromagnetic Rayleigh–Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray energies and pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using wire arrays with as many as 192 wires. Increasing the wire number produced significant improvements in the pinched plasma quality, reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of [formula omitted] have been achieved with arrays of 120 tungsten wires. Similar loads have recently been fielded on the Particle Beam Fusion Accelerator (PBFA II), producing x-ray energies in excess of 1.8 MJ at powers in excess of 160 TW. These intense x-ray sources offer the potential for performing many new basic physics and fusion-relevant experiments. © 1997, American Institute of Physics. All rights reserved.

More Details

Development of the downhole dynamometer database

Proceedings - SPE Production Operations Symposium

Waggoner, John R.

The Downhole Dynamometer Database is a compilation of test data collected with a set of five downhole tools built by Albert Engineering under contract to Sandia National Laboratories. The downhole dynamometer tools are memory tools deployed in the sucker rod string with sensors to measure pressure, temperature, load, and acceleration. The acceleration data is processed to yield position, so that a load vs. position dynagraph can be generated using data collected downhole. With five tools in the hole at one time, all measured data and computed dynagraphs from five different positions in the rod string are available. The purpose of the Database is to provide industry with a complete and high quality measurement of downhole sucker rod pumping dynamics. To facilitate use of the database, Sandia has developed a Microsoft Windows-based interface that functions as a visualizer and browser to the more than 40 MBytes of data. The interface also includes a data export feature to allow users to extract data from the database for use in their own programs. This paper includes a description of the downhole dynamometer tools, data collection program, database content, and a few illustrations of the data contained in the downhole dynamometer database.

More Details

Constraint-based interactive assembly planning

Proceedings - IEEE International Conference on Robotics and Automation

Wilson, R.H.

Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. This paper describes the principles and implementation of a framework that supports a wide variety of user-specified constraints for interactive assembly planning. Constraints from many sources can be expressed on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. All constraints are implemented as filters that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables a natural plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to several complex assemblies.

More Details

Automatic tool path generation for finish machining

Proceedings - IEEE International Conference on Robotics and Automation

Kwok, Kwan S.

A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375″ CBN grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm.

More Details

A tool to detect external cracks from within a metal tube

Caffey, Thurlow W.

A tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is outlined for the detection of external sidewall cracks in boiler tubes. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to 40dB in thin-walled boiler tubes.

More Details

Path planning for everyday robotics with SANDROS

Proceedings - IEEE International Conference on Robotics and Automation

Watterberg, P.; Xavier, P.; Hwang, Y.

We discuss the integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations. This creates a single system that allows the path to be computed, simulated, and then executed on the physical robot. The architecture and usage procedures are presented. Also, we present examples of its usage in typical environments found in our organization. The resulting system is as easy to use as the general simulation system (which is in common use here) and is fast enough (example problems are solved in seconds) to be used interactively on an everyday basis.

More Details

Comparison of an impedance heating system to mineral insulated heat trace for power tower applications

International Solar Energy Conference

Pacheco, James E.

A non-conventional type of heating system is being tested at Sandia National Laboratories for solar thermal power tower applications. In this system, called impedance heating, electric current flows directly through the pipe to maintain the desired temperature. The pipe becomes the resistor where the heat is generated. Impedance heating has many advantages over previously used mineral insulated (MI) heat trace. An impedance heating system should be much more reliable than heat trace cable since delicate junctions and cabling are not used and the main component, a transformer, is inherently reliable. A big advantage of impedance heating is the system can be sized to rapidly heat up the piping to provide rapid response times necessary in cyclic power plants such as solar power towers. In this paper, experimental results from testing an impedance heating system are compared to MI heat trace. We found impedance heating was able to heat piping rapidly and effectively. There were not significant stray currents and impedance heating did not affect instrumentation.

More Details

Millimeter-wave signal generation with use of an integrated modelocked semiconductor laser and photodiode

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Vawter, G.A.; Mar, A.; Hietala, V.; Zolper, J.

A compact optoelectronic integrated circuit (OEIC) for generation of millimeter-wave frequencies was demonstrated. It integrates a passively modelocked semiconductor ring laser, optical amplifier and high-speed photodiode for generation, amplification and detection of an optical pulse train with 30 to 90 GHz pulse-repetition frequency. This OEIC concept can be used in a wide variety of applications that require a very compact, light weight millimeter-wave source.

More Details

Semiconductor microlasers with intracavity microfluidics for biomedical analyses

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Gourley, Paul L.

Microfluidic chips have the potential to be useful in bioanalytical tools for DNA, protein, and cellular studies. To realize this potential, means for introducing fluids, separating their components, and detection must be integrated in onto the chip. Semiconductor laser microcavity spectroscopy is investigated as a means for ultrasensitive detection of various fluids, cells, and particulates. Two methods for implementing this laser device, the spectra for four different types of cells, and how the transverse mode spacings can be used to caliper the cell dimensions are discussed. The current investigations of different methods for pumping fluids through the microactivity space using mechanical or electromotive forces are also discussed.

More Details

Mini Ball Grid Array (mBGA) assembly on MCM-L boards

Proceedings - Electronic Components and Technology Conference

Chanchani, Rajen C.

Sandia National Laboratories has developed a chip scale packaging technology called mini Ball Grid Array (mBGA). The mBGA is a flip chip die, obtained by redistributing peripheral pads in existing dies to an area array of pads 10 mils or larger in diameter with a minimum pitch of 20 mils. The peripheral pads are redistributed to area array pads using two polyimide dielectric and two metal conductor layers. mBGA can be closely tiled together on a substrate to yield a very high circuit density. In an earlier report, we presented the results on the reliability and thermal performance of mBGA on silicon and ceramic substrates. In this report, we present an mBGA cost analysis, improvement in the mBGA bump adhesion, and reliability and thermal performance of mBGA assemblies on FR-4 boards.

More Details

Virtual actors and avatars in a flexible user-determined-scenario environment

Proceedings - Virtual Reality Annual International Symposium

Stansfield, Sharon A.

VRaptor, a VR system for situational training that uses trainer-defined scenarios is described. The trainee is represented by an avatar; the rest of the virtual world is populated by virtual actors, which are under the control of trainer-defined scripts. The scripts allow reactive behaviors, but the trainer can control the overall scenario. This type of training system may be very useful in supplementing physical training.

More Details

Comparison of gamma-densitometry tomography and electrical-impedance tomography for determining material distribution in liquid-solid flows

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED

Shollenberger, K.A.

Gamma-densitometry tomography (GDT) and electrical-impedance tomography (EIT) have both been applied to a liquid-solid flow for comparison purposes. The experiment consisted of a cylinder (19 cm diameter) filled with water, in which 80 μm glass spheres were suspended by a mixer to achieve solid volume fractions of 0.01, 0.02, and 0.03. Both GDT and EIT revealed a relatively uniform distribution of solids in the measurement plane, and the average solid volume fractions from both techniques were in good agreement.

More Details

Core-tube data logger

Henfling, Joseph A.

Wireline core drilling, increasingly used for geothermal exploration, employs a core-tube to capture a rock core sample during drilling. Three types of core-tube data loggers (CTDL) have been built and tested to date by Sandia national Laboratories. They are: (1) temperature-only logger, (2) temperature/inclinometer logger and (3) heat-shielded temperature/inclinometer logger. All were tested during core drilling operations using standard wireline diamond core drilling equipment. While these tools are designed for core-tube deployment, the tool lends itself to be adapted to other drilling modes and equipment. Topics covered in this paper include: (1) description on how the CTDLs are implemented, (2) the components of the system, (3) the type of data one can expect from this type of tool, (4) lessons learned, (5) comparison to its counterpart and (6) future work.

More Details

Comparative hot carrier induced degradation in 0,25 μm MOSFETs with H or D passivated interfaces

European Solid-State Device Research Conference

Warren, William L.

Hot electron induced degradation in 0.25 μm n-channel MOSFETs annealed in H2 or D2 containing atmospheres is reported. Threshold voltage and channel transconductance variations correlate with the growth of the interface state density evidenced by charge pumping measurements. The transistor lifetime (for a given transconductance variation) is ∼ 10-40 times shorter for H2 as opposed to D2 annealed devices.

More Details

Innovative computing for diagnoses from medical, magnetic-resonance imaging

Diegert, Carl F.

The author presents a final report on a Laboratory-Directed Research and Development (LDRD) project, Innovative Computing for Diagnoses from Medical, Magnetic-Resonance Imaging, performed during fiscal years 1992 and 1993. The project defined a role for high-performance computing in surgery: the supercomputer can automatically summarize the three-dimensional extents of lesions and other clinically-relevant structures, and can deliver these summaries to workstation-based, augmented-reality environments at the clinical site. The author developed methods and software to make these summaries from the digital data already acquired using clinical, magnetic-resonance machines. In joint work with Albuquerque`s Department of Veterans Affairs Hospital, the author applied this work, and obtained a basis for planning, for rehearsal, and for guidance during surgery.

More Details

Revised model of thermally stimulated current in mos capacitors

IEEE Transactions on Nuclear Science

Fleetwood, D.M.

It is shown analytically and experimentally that, when significant densities of positive and/or negative charge are trapped in the bulk of the oxide, standard thermally stimulated current (TSC) measurements at negative gate bias may not provide accurate estimates of MOS oxide-trap charge densities. Combining TSC measurements at negative bias with capacitance-voltage (C-V) measurements allows useful, self-consistent estimates of trapped electron densities in the oxide to be obtained. However, unless one can determine whether most of the trapped electrons lie in the bulk of the oxide or in border traps, unambiguous estimates of trapped positive charge densities cannot be obtained with negative or positive bias TSC, with or without C-V measurements. Implications are discussed for charge trapping in radiation-hardened thermal oxides, SIMOX buried oxides, and bipolar base oxides. © 1997 IEEE.

More Details

Single event gate rupture in thin gate oxides

IEEE Transactions on Nuclear Science

Sexton, Frederick W.

The dependence of single event gate rupture (SEGR) critical field on oxide thickness is examined for gate oxides from 6 to 18 nm. Capacitor data are compared to SEGR data from full integrated circuits. A I/ECR dependence is found for critical field to rupture as a function of ion linear energy transfer (LET), consistent with earlier work for power MOSFETS with oxide thicknesses from 30 to 150 nm. More importantly, critical field to rupture increases with decreasing oxide thickness, consistent with increasing oxide breakdown field prior to heavy-ion exposure. This suggests that SEGR need not be a limiting factor as future technologies scale into the deep submicron region. However, there is a great deal of uncertainty in how voltage may scale with decreasing oxide thickness, and SEGR may continue to be a concern for devices that operate at electric fields significantly higher than 5 MV/cm. © 1997 IEEE.

More Details

Radiation-induced gain degradation in lateral pnp b jts with lightly and heavily doped emitters

IEEE Transactions on Nuclear Science

Fleetwood, D.M.

Radiation-induced gain degradation is compared in two types of lateral PNP bipolar devices that are identical except for the emitter doping. The devices with heavily-doped emitters (1×1020 cm-3) degrade less than the devices with lightly-doped emitters (1×1018 cm-3). Both device types are sensitive to interface-trap formation in the oxide above the emitter-base junction and the neutral base region. In addition, the devices with lightly-doped emitters experience spreading of the depletion region into the emitter, increasing their sensitivity to total-dose irradiation. The gain degradation in both device types is due to a combination of increased base current and decreased collector current. The radiation-induced decrease in collector current is more significant for devices from this technology than for other devices studied previously. Increased gain degradation is observed in heavily-doped devices irradiated at low dose rates, but the enhanced degradation appears to be due to time-dependent effects rather than true dose-rate effects. The lightly-doped devices do not exhibit a clear dose-rate trend and the gain of these devices improves during post-irradiation annealing. © 1997 IEEE.

More Details

3D electromagnetic inversion using conjugate gradients

International Geoscience and Remote Sensing Symposium (IGARSS)

Newman, G.A.

In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.

More Details

3D electromagnetic modeling using staggered finite differences

International Geoscience and Remote Sensing Symposium (IGARSS)

Newman, G.A.

The method of finite differences has been employed to solve a variety of 3D electromagnetic (EM) forward problems arising in geophysical applications. Specific sources considered include dipolar and magnetotelluric (MT) field excitation in the frequency domain. In the forward problem, the EM fields are simulated using a vector Helmholtz equation for the electric field, which are approximated using finite differences on a staggered grid. To obtain the fields, a complex-symmetric matrix system of equations is assembled and iteratively solved using the quasi-minimum method (QMR) method. Perfectly matched layer (PML) absorbing boundary conditions are included in the solution and are necessary to accurately simulate fields in propagation regime (frequencies>10 MHz). For frequencies approaching the static limit (<10 KHz), the solution also includes a static-divergence correction, which is necessary to accurately simulate MT source fields and can be used to accelerate convergence for the dipolar source problem.

More Details

Studies of photoredox reactions on nanosize semiconductors

Materials Research Society Symposium - Proceedings

Wilcoxon, Jess P.

Light induced electron transfer (ET) from nanosize semiconductors of MoS2 to organic electron acceptors such as 2,2′-bipyridine (bpy) and methyl substituted 4,4′,5,5′-tetramethyl-2,2′-bipyridine (tmb) was studied by static and time resolved photoluminescence spectroscopy. The kinetics of ET were varied by changing the nanocluster size (the band gap), the electron acceptor, and the polarity of the solvent. MoS2 is an especially interesting semiconductor material as it is an indirect semiconductor in bulk form, and has a layered covalent bonding arrangement which is highly resistant to photocorrosion.

More Details

A miniature solid propellant rocket motor

33rd Joint Propulsion Conference and Exhibit

Grubelich, Mark C.

A miniature solid-propellant rocket motor has been developed to impart a specific motion to an object deployed in space. This rocket motor effectively eliminated the need for a cold-gas thruster system or mechanical spin-up system. A low-energy igniter, an XMC4397, employing a semiconductor bridge was used to ignite the rocket motor. The rocket motor was ground-tested in a vacuum tank to verify predicted space performance and successfully flown in a Sandia National Laboratories flight vehicle program.

More Details

Stakeholder identification of advanced technology opportunities at international ports of entry

Parker, Stephen K.

As part of the Advanced Technologies for International and Intermodal Ports of Entry (ATIPE) Project, a diverse group of stakeholders was engaged to help identify problems experienced at inland international border crossings, particularly those at the US-Mexican border. The fundamental issue at international ports of entry is reducing transit time through the required documentation and inspection processes. Examples of other issues or problems, typically manifested as time delays at border crossings, repeatedly mentioned by stakeholders include: (1) lack of document standardization; (2) failure to standardize inspection processes; (3) inadequate information and communications systems; (4) manual fee and tariff collection; (5) inconsistency of processes and procedures; and (6) suboptimal cooperation among governmental agencies. Most of these issues can be addressed to some extent by the development of advanced technologies with the objective of allowing ports of entry to become more efficient while being more effective. Three categories of technologies were unambiguously of high priority to port of entry stakeholders: (1) automated documentation; (2) systems integration; and (3) vehicle and cargo tracking. Together, these technologies represent many of the technical components necessary for pre-clearance of freight approaching international ports of entry. Integration of vehicle and cargo tracking systems with port of entry information and communications systems, as well as existing industry legacy systems, should further enable border crossings to be accomplished consistently with optimal processing times.

More Details

Thermal stability of fluorinated SiO2 films: Effects of hydration and film-substrate interaction

Materials Research Society Symposium - Proceedings

Sullivan, J.P.

The thermal stability of fluorinated SiO2 films (SiOF) was found to be dependent on F content and the type of substrate upon which the film was deposited. SiOF films with a range of F concentrations were deposited using an electron cyclotron resonance (ECR) plasma upon Si, Al/Si, TiN/Al/Si, and Al/SiO2/Si substrates. Following deposition, the films were deliberately hydrated and/or annealed and their stability assessed. Hydration was found to only affect the high F content films. Capacitance changes with annealing in the high F content films were found to occur beginning at 200 °C. These changes, which were independent of substrate type, likely occurred due to desorption of H2O in the films. After annealing of the high F content films up to 400 °C, a reduction in F content was found for SiOF films on some substrates. Significant reductions were found for SiOF films on Al/Si substrates, while little or no change was found for films on TiN/Al/Si, Al/SiO2/Si, or Si substrates. Local chemical analysis of those films which showed F reduction indicated that the F profile was approximately uniform throughout the layer and did not pile-up at the interface. The substrate-dependent thermal instability exhibited by these films suggests the chemical nature or qualities of the substrate may play a role in the F reduction reaction.

More Details

Performance of an acousto-optic Bragg cell under ion microbeam irradiation

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Doyle, Barney L.

An acousto-optic (AO) deflector composed of PbMoO4 was exposed to 4 MeV protons while operating under Bragg angle conditions. An ion beam in air of 1 mm width was directed normal to the crystal face and laser beam. Between exposures, the approximately 13 mm × 8.5 mm AO deflector was mechanically translated in two dimensions in front of the fixed ion beam. The AO diffraction efficiency was mapped and was observed to change as a function of ion beam location and dose rate. These effects are attributed to the induced change in the temperature distribution of the crystal, which changed the sonic velocity and refractive index. Similar effects were observed when the ion beam was directed at the acoustic transducer.

More Details

Charge Collection and SEU from Angled Ion Strikes

IEEE Transactions on Nuclear Science

Dodd, Paul E.

Charge collection and SEU from angled ion strikes are studied using three-dimensional simulation. The physics of charge collection in unloaded diodes and transistors is explored, as is the angular dependence of upset threshold in CMOS SRAMs. The simulation results are compared to analytical models for charge collection. Modeling fundamental transport in SRAMs, the true effective LET relationship is computed and used to analyze experimental heavy-ion data. Impacts on SEU test methodology are discussed. © 1997, IEEE. All rights reserved.

More Details

Dose enhancement in a room cobalt-60 source1

IEEE Transactions on Nuclear Science

Fleetwood, D.M.

A room Co-60 source was characterized using thermoluminescent dosimeters (TLDs) and pMOS RADFETs. Measurements were made over a range of dose rates between 0.8 and 100 mrad(Si)/s. Dose enhancement (DE) was measured using RADFETs with and without gold-flashed kovar lids. DE factors ranged from 1.05 to 2.35. A method was developed to predict dose enhancement as a function of position and test configuration. This method involves separation of direct and scattered gamma dose rate contributions. ©1997 IEEE.

More Details

Structure-property relationships in silica-siloxane nanocomposite materials

Annual Technical Conference - ANTEC, Conference Proceedings

Ulibarri, Tamara A.

The simultaneous formation of a filler phase and a polymer matrix via in situ sol-gel techniques provides silica-siloxane nanocomposite materials of high strength. This study concentrates on investigating the effects of temperature and relative humidity (RH) on a trimodal polymer system in an attempt to accelerate the reaction as well as evaluate subtle process-structure-property relationships. It was found that successful process acceleration is only viable for high humidity systems when using the tin(IV) catalyst dibutyltin dilaurate (DBTDL). Processes involving low humidity were found to be very temperature and time dependent. Bimodal systems were investigated and demonstrated that the presence of a short-chain component led to enhanced material strength. This part of the study also revealed a link between the particle size and population density and the optimization of material properties.

More Details

Newberry exploratory slimhole

Finger, John T.

During July-November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 foot exploratory slimhole (3.85 inches diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA.

More Details

High temperature spectral gamma well logging

Normann, Randy A.

A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

More Details

Practical aspects of prestack depth migration with finite differences

1997 SEG Annual Meeting

Ober, Curtis C.

Finite-difference, prestack depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. We have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed.

More Details

Seismic imaging on massively parallel computers

1997 SEG Annual Meeting

Ober, Curtis C.

A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in U.S. onshore regions. Pre-stack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar-wave equation using finite differences. Current industry computational capabilities are insufficient for the application of finite-difference, 3-D, prestack, depth-migration algorithms. High performance computers and state-of-the-art algorithms and software are required to meet this need. As part of an ongoing ACT1 project funded by the U.S. Department of Energy, we have developed a finite-difference, 3-D prestack, depth-migration code for massively parallel computer systems. The goal of this work is to demonstrate that massively parallel computers (thousands of processors) can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite-difference, prestack, depth migration practical for oil and gas exploration.

More Details

Subsurface steam sampling in Geysers wells

Normann, Randy A.

A new downhole sampling tool has been built for use in steam wells at The Geysers geothermal reservoir. The tool condenses specimens into an initially evacuated vessel that is opened down hole at the direction of an on-board computer. The tool makes a temperature log of the well as it is deployed, and the pressure and temperature of collected specimens are monitored for diagnostic purposes. Initial tests were encouraging, and the Department of Energy has funded an expanded effort that includes data gathering needed to develop a three-dimensional model of The Geysers geochemical environment. Collected data will be useful for understanding the origins of hydrogen chloride and non-condensable gases in the steam, as well as tracking the effect of injection on the composition of produced steam. Interested parties are invited to observe the work and to join the program.

More Details

The growth of mid-infrared emitting InAsSb/InAsP strained-layer superlattices using metal-organic chemical vapor deposition

Proceedings of the IEEE 24th International Symposium on Compound Semiconductors, ISCS 1997

Biefeld, Robert M.

We describe the metal-organic chemical vapor deposition of InAsSb/InAsP strained-layer superlattice (SLS) active regions for use in mid-infrared emitters. These SLSs were grown at 500°C, and 200 torr in a horizontal quartz reactor using trimethylindium, triethylantimony, AsH3, and PH3. By changing the layer thickness and composition we have prepared structures with low temperature (les/20 K) photoluminescence wavelengths ranging from 3.2 to 5.0 μm. Excellent performance was observed for an SLS light emitting diode (LED) and both optically pumped and electrically injected SLS lasers. An InAsSb/InAsP SLS injection laser emitted at 3.3 μm at 80 K with peak power of 100 mW.

More Details

NONISOTHERMAL MULTIPHASE SUBSURFACE TRANSPORT ON PARALLEL COMPUTERS

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Martinez, Mario J.

We present a numerical method for nonisothermal, multiphase subsurface transport in heterogeneous porous media. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. An illustrative application is shown to demonstrate capabilities and performance.

More Details

High performance microsystem packaging: A perspective

Microelectronics Reliability

Romig, Alton D.

The second silicon revolution will be based on intelligent, integrated microsystems where multiple technologies (such as analog, digital, memory, sensor, micro-electro-mechanical, and communication devices) are integrated onto a single chip or within a multichip module. A necessary element for such systems is cost-effective, high-performance packaging. This paper examines many of the issues associated with the packaging of integrated microsystems, with an emphasis on the areas of packaging design, manufacturability, and reliability. © 1997 Published by Elsevier Science Ltd.

More Details

Authenticated tracking and monitoring system (ATMS) tracking shipments from an Australian uranium mine

Proceedings - International Carnahan Conference on Security Technology

Schoeneman, J.L.

The Authenticated Tracking and Monitoring System (ATMS) answers the need for global monitoring of the status and location of sensitive items on a worldwide basis, 24 hours a day. The ATMS concept uses wireless sensor packs to monitor the status of the items and environmental conditions, to collect a variety of sensor event data, and to transmit the data through the INMARSAT satellite communication system, which then sends the data to appropriate ground stations for tracking and monitoring. Authentication and encryption algorithms are used throughout the system to secure the data during communication activities. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements. Following discussions between the Australian Safeguards Office (ASO), the U.S. Department of Energy (DOE), and Sandia National Laboratories (SNL) in early 1995, the parties mutually decided to conduct and evaluate a field trial prototype ATMS to track and monitor shipments of uranium ore concentrate (UOC) from a currently operating uranium mine in Australia to a final destination in Europe. This trial is in the process of being conducted on a worldwide basis with tracking and monitoring stations located at sites in both Australia and the U.S. This paper describes the trial.

More Details

Theoretical investigation of extended defects in group-III nitrides

Materials Research Society Symposium - Proceedings

Wright, Alan F.

We have investigated two types of extended defects commonly found in AlN, GaN and InN films using density-functional techniques. First, basal-plane stacking faults have been studied for all three compounds. Stacking-fault energies were found to be largest in AlN and smallest in GaN consistent with density-functional results for their wurtzite/zinc-blende energy differences. In addition, the 4H and 6H structures were found to have lower energies than zinc blende for all three compounds. Second, we have investigated the electronic structure and formation energy for an edge dislocation in AlN. The full-core dislocation structure was found to have a filled electronic level approximately 0.55 eV above the valence-band edge and an empty level 1.4 eV below the conduction-band edge. An open-core structure was found to have filled and empty electronic levels closer to the middle of the energy gap. Formation energies for these two geometries suggest that the full-core structure would be expected to form in p-type material whereas both are expected in n-type material.

More Details

Raman spectroscopy of amorphous carbon

Materials Research Society Symposium - Proceedings

Tallant, David T.

Amorphous carbon is an elemental form of carbon with low hydrogen content, which may be deposited in thin films by the impact of high energy carbon atoms or ions. It is structurally distinct from the more well-known elemental forms of carbon, diamond and graphite. It is distinct in physical and chemical properties from the material known as diamond-like carbon, a form which is also amorphous but which has a higher hydrogen content, typically near 40 atomic percent. Amorphous carbon also has distinctive Raman spectra, whose patterns depend, through resonance enhancement effects, not only on deposition conditions but also on the wavelength selected for Raman excitation. This paper provides an overview of the Raman spectroscopy of amorphous carbon and describes how Raman spectral patterns correlate to film deposition conditions, physical properties and molecular level structure.

More Details

Selective etching of wide bandgap nitrides

Materials Research Society Symposium - Proceedings

Shul, Randy J.

High-density plasma etching has been an effective patterning technique for the group-III nitrides due to ion fluxes which are 2 to 4 orders of magnitude higher than more conventional reactive ion etch (RIE) systems. GaN etch rates exceeding 0.68 μm/min have been reported in Cl2/H2/Ar inductively coupled plasmas (ICP) at -280 V dc-bias. Under these conditions, the etch mechanism is dominated by ion bombardment energies which can induce damage and minimize etch selectivity. High selectivity etch processes are often necessary for heterostructure devices which are becoming more prominent as growth techniques improve. In this study, we will report high-density ICP etch rates and selectivities for GaN, AlN, and InN as a function of cathode power, ICP-source power, and chamber pressure. GaN:AlN selectivities >8:1 were observed in a Cl2/Ar plasma at 10 m Torr pressure, 500 W ICP-source power, and 130 W cathode rf-power, while the GaN:InN selectivity was optimized at approximately 6.5:1 at 5 m Torr, 500 W ICP-source power, and 130 W cathode rf-power.

More Details

Statistical analysis of modal parameters using the bootstrap

Paez, Thomas L.

Structural dynamic testing is concerned with the estimation of system properties, including frequency response functions and modal characteristics. These properties are derived from tests on the structure of interest, during which excitations and responses are measured and Fourier techniques are used to reduce the data. The inputs used in a test are frequently random, and they excite random responses in the structure of interest When these random inputs and responses are analyzed they yield estimates of system properties that are random variable and random process realizations. Of course, such estimates of system properties vary randomly from one test to another, but even when deterministic inputs are used to excite a structure, the estimated properties vary from test to test. When test excitations and responses are normally distributed, classical techniques permit us to statistically analyze inputs, responses, and some system parameters. However, when the input excitations are non-normal, the system is nonlinear, and/or the property of interest is anything but the simplest, the classical analyses break down. The bootstrap is a technique for the statistical analysis of data that are not necessarily normally distributed. It can be used to statistically analyze any measure of input excitation or response, or any system property, when data are available to make an estimate. It is designed to estimate the standard error, bias, and confidence intervals of parameter estimates. This paper shows how the bootstrap can be applied to the statistical analysis of modal parameters.

More Details

Computing the apparent centroid of radar targets

Lee, Cullen E.

A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based on a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.

More Details

Nondestructive evaluation (NDE) of composite-to-metal bond interface of a wind turbine blade using an acousto-ultrasonic technique

Gieske, John H.

An acousto-ultrasonic inspection technique was developed to evaluate the structural integrity of the epoxy bond interface between a metal insert and the fiber glass epoxy composite of a wind turbine blade. Data was generated manually as well as with a PC based data acquisition and display system. C-scan imaging using a portable ultrasonic scanning system provided an area mapping of the delamination or disbond due to fatigue testing and normal field operation conditions of the turbine blade. Comparison of the inspection data with a destructive visual examination of the bond interface to determine the extent of the disbond showed good agreement between the acousto-ultrasonic inspection data and the visual data.

More Details

Free form fabrication using the laser engineered net shaping (LENS{trademark}) process

Keicher, David M.

Sandia National Laboratories is developing a technology called Laser Engineered Net Shaping{trademark} (LENS{trademark}). This process allows complex 3-dimensional solid metallic objects to be directly fabricated for a CAD solid model. Experiments performed demonstrate that complex alloys such as Inconel{trademark} 625 and ANSI stainless steel alloy 316 can be used in the LENS{trademark} process to produce solid metallic-shapes. In fact, the fabricated structures exhibit grain growth across the deposition layer boundaries. Mechanical testing data of deposited 316 stainless steel material indicates that the deposited material strength and elongation are greater than that reported for annealed 316 stainless steel. Electron microprobe analysis of the deposited Inconel{trademark} 625 material shows no compositional degradation of the 625 alloy and that 100% dense structures can be obtained using this technique. High speed imaging used to acquire process data during experimentation shows that the powder particle size range can significantly affect the stability, and subsequently, the performance of the powder deposition process. Finally, dimensional studies suggest that dimensional accuracy to {+-} 0.002 inches (in the horizontal direction) can be maintained.

More Details

On the computational complexity of sequence design problems

Hart, William E.

Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparent difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. The authors evaluate the practical relevance of two sequence design problems by analyzing their computation complexity. They show that the canonical method of sequence design is intractable, and describe approximation algorithms for this problem. The authors also describe an efficient algorithm that exactly solves the grand canonical method. The analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem, and highlights the need to analyze these problems to evaluate their practical relevance.

More Details

The effect of stress on the nanomechanical properties of Au surfaces

Houston, Jack E.

Stress in thin films plays a critical role in many technologically important areas. The role is a beneficial one in strained layer superlattices where semiconductor electrical and optical properties can be tailored with film stress. On the negative side, residual stress in thin-film interconnects in microelectronics can lead to cracking and delamination. In spite of their importance, however, surface and thin-film stresses are difficult to measure and control, especially on a local level. In recent studies, we used the Interfacial Force Microscope (IFM) in a nanoindenter mode to survey the nanomechanical properties of Au films grown on various substrates. Quantitative tabulations of the indentation modulus and the maximum shear stress at the plastic threshold showed consistent values over individual samples but a wide variation from substrate to substrate. These values were compared with film properties such as surface roughness, average grain size and interfacial adhesion and no correlation was found. However, in a subsequent analysis of the results, we found consistencies which support the integrity of the data and point to the fact that the results are sensitive to some property of the various film/substrate combinations. In recent measurements on two of the original substrate materials we found a direct correlation between the nanomechanical values and the residual stress in the films, as measured globally by a wafer warping technique. In the present paper, we review these earlier results and show recent measurements dealing with stresses externally applied to the films which supports our earlier conclusion concerning the role of stress on our measurements. In addition, we present very recent results concerning morphological effects on nanomechanical properties which add additional support to the suggestion that near-threshold indentation holds promise of being able to measure stress on a very local level.

More Details

Direct observation of mobile protons in SiO{sub 2} thin films: Potential application in a novel memory device

Warren, William L.

In this work we show that annealing of silicon/silicon-dioxide/silicon structures in forming gas (N{sub 2}:H{sub 2}; 95:5) above 500{degrees}C leads to spontaneous incorporation of mobile H{sup +} ions in the buried SiO{sub 2} layer. We demonstrate that, unlike the alkali ions feared as killer contaminants in the early days, the space charge distribution of these mobile protons within the buried oxide layer can be very well controlled and easily rearranged with relatively high speed at room temperature. The hysteresis in the flat band voltage shift provides a unique vehicle to study proton kinetics in silicon dioxide thin films. It is further shown how this effect can be used as the basis for a reliable nonvolatile FET memory device that has potential to be competitive with state-of-the-art Si-based memory technologies. The power of this novel device is its simplicity; it requires few processing steps, all of which are standard in Si integrated-circuit fabrication.

More Details

Interfacial arsenic from wet oxidation of Al{sub x}Ga{sub 1-X}As/GaAs: Its effects on electronic properties and new approaches to MIS device fabrication

Ashby, C.I.H.; Sullivan, J.P.; Newcomer, P.P.

Three important oxidation regimes have been identified in the temporal evolution of the wet thermal oxidation of Al{sub x}Ga{sub 1-x}As (1 {ge} x {ge} 0.90) on GaAs: (1) oxidation of Al and Ga in the Al{sub x}Ga{sub 1-x}As alloy to form an amorphous oxide layer, (2) oxidative formation and elimination of elemental As (both crystalline and amorphous) and of amorphous As{sub 2}O{sub 3}, and (3) crystallization of the oxide film. Residual As can result in up to a 100-fold increase in leakage current and a 30% increase in the dielectric constant and produce strong Fermi-level pinning and high leakage currents at the oxidized Al{sub x}Ga{sub 1-x}As/GaAs interface. The presence of thermodynamically-favored interfacial As may impose a fundamental limitation on the application of AlGaAs wet oxidation for achieving MIS devices in the GaAs material system.

More Details

A quantum mechanical investigation of positively charged defects in SiO{sub 2} thin film devices

Warren, William L.

Ab initio Hartree-Fock and second-order Moeller-Plesset theory calculations have been performed to investigate the stability of triply-coordinated O{sup +} centers in the Si-O-Si network of amorphous SiO{sub 2}. The calculations reveal that the H{sup +} ion binds with a bridging O center to form a very stable (D{sub e} > 6 eV) trivalent O complex. Capture of an electron by the positively charged protonated complex, however, is predicted to immediately lead to the dissociation of the O-H bond. A relatively weaker, but stable bond is also formed between the bridging O atom and a {sup +}SiH{sub 3} ion.

More Details

Factors affecting use of fission foils as dosimetry sensors

Griffin, Patrick J.

Fission foils are commonly used as dosimetry sensors. They play a very important role in neutron spectrum determinations. This paper provides a combination of experimental measurements and calculations to quantify the importance and synergy of several factors that affect the fission response of a dosimeter. Only when these effects are properly treated can fission dosimeters be used with sufficient fidelity.

More Details

Rationale for the H-19 and H-11 tracer tests at the WIPP site

Meigs, Lucy C.

The Waste Isolation Pilot Plant (WIPP) is a repository for transuranic wastes constructed in bedded Permian-age halite in the Delaware Basin, a sedimentary basin in southeastern New Mexico, USA. A drilling scenario has been identified during performance assessment (PA) that could lead to the release of radionuclides to the Culebra Dolomite Member of the Rustler Formation, the most transmissive water-saturated unit above the repository horizon. Were this to occur, the radionuclides would need to be largely contained within the Culebra (or neighboring strata) within the WIPP-site boundary through the period lasting for 10,000 years after repository closure for WIPP to remain in compliance with applicable regulations on allowable releases. Thus, processes affecting transport of radionuclides within the Culebra are of importance to PA.

More Details

Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting

Preece, Dale S.

A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

More Details

Vertical-axis wind turbines -- The current status of an old technology

Berg, Dale E.

Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

More Details

Structural dynamics modeling and testing of the Department of Energy tractor/trailer combination

Field Jr., R.V.; Hurtado, J.E.; Carne, T.G.; Dohrmann, C.R.

This study presents a combined analytical and experimental effort to characterize and improve the ride quality of the Department of Energy tractor/trailer combination. The focus is to augment the experimental test results with the use of a high quality computer model. The discussion includes an overview of the finite element model of the vehicle and experimental modal test results. System identification techniques are employed to update the mathematical model. The validated model is then used to illustrate the benefits of incorporating two major design changes, namely the switch from a separate cab/sleeper configuration to an integrated cab, and the use of a cab suspension system.

More Details

Security systems engineering overview

Steele, Basil J.

Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at $70 billion in direct costs and up to $300 billion in indirect costs. Health insurance fraud alone is estimated to cost American businesses $100 billion. Theft, warranty fraud, and counterfeiting of computer hardware totaled $3 billion in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies (counterfeit currency, cellular phone billing, credit card fraud, health care fraud, passport, green cards, and questionable documents); industrial espionage detection and prevention (intellectual property, computer chips, etc.); and security barrier technology (creation of delay such as gates, vaults, etc.).

More Details

Technologies for security, military police and professional policing organizations, the Department of Energy perspective

Steele, Basil J.

There are many technologies emerging from this decade that can be used to help the law enforcement community protect the public as well as public and private facilities against ever increasing threats to this country and its resources. These technologies include sensors, closed circuit television (CCTV), access control, contraband detection, communications, control and display, barriers, and various component and system modeling techniques. This paper will introduce some of the various technologies that have been examined for the Department of Energy that could be applied to various law enforcement applications. They include: (1) scannerless laser radar; (2) next generation security systems; (3) response force video information helmet system; (4) access delay technologies; (5) rapidly deployable intrusion detection systems; and (6) cost risk benefit analysis.

More Details

Statistical validation of stochastic models

Paez, Thomas L.

It is common practice in structural dynamics to develop mathematical models for system behavior, and the authors are now capable of developing stochastic models, i.e., models whose parameters are random variables. Such models have random characteristics that are meant to simulate the randomness in characteristics of experimentally observed systems. This paper suggests a formal statistical procedure for the validation of mathematical models of stochastic systems when data taken during operation of the stochastic system are available. The statistical characteristics of the experimental system are obtained using the bootstrap, a technique for the statistical analysis of non-Gaussian data. The authors propose a procedure to determine whether or not a mathematical model is an acceptable model of a stochastic system with regard to user-specified measures of system behavior. A numerical example is presented to demonstrate the application of the technique.

More Details

Applications of virtual reality to nuclear safeguards and non-proliferation

Stansfield, S.

This paper presents several applications of virtual reality relevant to the areas of nuclear safeguards and non-proliferation. Each of these applications was developed to the prototype stage at Sandia National Laboratories` Virtual Reality and Intelligent Simulation laboratory. These applications include the use of virtual reality for facility visualization, training of inspection personnel, and security and monitoring of nuclear facilities.

More Details

Use of artificial neural networks for analysis of complex physical systems

Paez, Thomas L.

Mathematical models of physical systems are used, among other purposes, to improve our understanding of the behavior of physical systems, predict physical system response, and control the responses of systems. Phenomenological models are frequently used to simulate system behavior, but an alternative is available - the artificial neural network (ANN). The ANN is an inductive, or data-based model for the simulation of input/output mappings. The ANN can be used in numerous frameworks to simulate physical system behavior. ANNs require training data to learn patterns of input/output behavior, and once trained, they can be used to simulate system behavior within the space where they were trained.They do this by interpolating specified inputs among the training inputs to yield outputs that are interpolations of =Ming outputs. The reason for using ANNs for the simulation of system response is that they provide accurate approximations of system behavior and are typically much more efficient than phenomenological models. This efficiency is very important in situations where multiple response computations are required, as in, for example, Monte Carlo analysis of probabilistic system response. This paper describes two frameworks in which we have used ANNs to good advantage in the approximate simulation of the behavior of physical system response. These frameworks are the non-recurrent and recurrent frameworks. It is assumed in these applications that physical experiments have been performed to obtain data characterizing the behavior of a system, or that an accurate finite element model has been run to establish system response. The paper provides brief discussions on the operation of ANNs, the operation of two different types of mechanical systems, and approaches to the solution of some special problems that occur in connection with ANN simulation of physical system response. Numerical examples are presented to demonstrate system simulation with ANNs.

More Details

A virtual universe utilizing haptic display

Anderson, T.

This paper summarizes a virtual reality universe application in which a user can travel between four virtual worlds through the use of haptic buttons. Each of the worlds demonstrates different aspects of haptic rendering which together create a wide base for force feedback effects. Specifics of the rendering algorithms will be discussed along with possible uses and modifications for other real-life applications.

More Details

The crystalline-silicon photovoltaic R&D project at NREL and SNL

Gee, J.M.

This paper summarizes the U.S. Department of Energy R&D program in crystalline-silicon photovoltaic technology, which is jointly managed by Sandia National Laboratories and National Renewable Energy Laboratory. This program features a balance of basic an d applied R&D, and of university, industry, and national laboratory R&D. The goal of the crystalline-silicon R&D program is to accelerate the commercial growth of crystalline-silicon photovoltaic technology, and four strategic objectives were identified to address this program goal. Technical progress towards meeting these objectives is reviewed.

More Details

Using the Remote Access Protocol for usability evaluation in X Windows

Edwards, T.

The automatic evaluation of graphical user interfaces can help reduce development costs in the creation of new designs or modification of existing designs. Several standards for the X Window System have been proposed or implemented that could greatly reduce the time spent evaluating GUIs. We implemented a User Interface Testbed (UseIT) based on the proposed Remote Access Protocol (RAP) standard. UseIT was created to automatically record an end user`s interaction with a Motif GUI application without modification or re-linking of existing code. The recorded interaction could then be replayed or displayed visually for interpretation by a human factors specialist. The end goal was to recreate the GUI and automatically recommend design changes based upon the interactions.

More Details

Photovoltaic module and array performance characterization methods for all system operating conditions

King, David L.

This paper provides new test methods and analytical procedures for characterizing the electrical performance of photovoltaic modules and arrays. The methods use outdoor measurements to provide performance parameters both at standard reporting conditions and for all operating conditions encountered by typical photovoltaic systems. Improvements over previously used test methods are identified, and examples of the successful application of the methodology are provided for crystalline- and amorphous-silicon modules and arrays. This work provides an improved understanding of module and array performance characteristics, and perhaps most importantly, a straight- forward yet rigorous model for predicting array performance at all operating conditions. For the first time, the influences of solar irradiance, operating temperature, solar spectrum, solar angle-of- incidence, and temperature coefficients are all addressed in a practical way that will benefit both designers and users of photovoltaics.

More Details

Investigation of effects of deposition parameters on composition, microstructure,a nd emission of RF sputtered SrS:Eu thin film phosphors

Ruffner, Judith A.

There has been little systematic study of the cause of dead (inactive) layers in II-VI phosphors used in thin film electroluminescent devices. This paper discusses preparation and characterization of rf sputter deposited Eu-doped Sr sulfide (SrS:Eu) thin films for use in a study to determine the cause of the dead layer. (The dead layer`s behavior is likely influenced by thin film composition, crystallinity, and microstructure.) We have deposited SrS:Eu thin films in a repeatable, consistent manner and have characterized properties such as composition, crystallinity, and microstructure as well as photoluminescent (PL) and electroluminescent behavior. The composition was determined using Rutherford backscattering spectrometry and electron microprobe analysis. XRD was used to assess crystalline orientation and grain size, SEM to image thin film microstructure. Measuring the PL decay after subnanosecond laser excitation in the lowest absorption band of the dopant allowed direct measurement of the dopant luminescence efficiency.

More Details

EMMA: Electromechanical Modeling in ALEGRA

Robinson, Allen C.

To ensure high levels of deterrent capability in the 21st century, new stockpile stewardship principles are being embraced at Sandia National Laboratories. The Department of Energy Accelerated Strategic Computing Initiative (ASCI) program is providing the computational capacity and capability as well as funding the system and simulation software infrastructure necessary to provide accurate, precise and predictive modeling of important components and devices. An important class of components require modeling of piezoelectric and ferroceramic materials. The capability to run highly resolved simulations of these types of components on the ASCI parallel computers is being developed at Sandia in the ElectroMechanical Modeling in Alegra (EMMA) code. This a simulation capability being developed at Sandia National Laboratories for high-fidelity modeling of electromechanical devices. these devices can produce electrical current arising from material changes due to shock impact or explosive detonation.

More Details

Building on and spinning off: Sandia National Labs` creation of sensors for Vietnam

Ullrich, Rebecca A.

This paper discusses Sandia National Laboratories` development of new technologies for use in the Vietnam War - specifically the seismic sensors deployed to detect troop and vehicle movement - first along the Ho Chi Minh Trail and later in perimeter defense for American military encampments in South Vietnam. Although the sensor story is a small one, it is interesting because it dovetails nicely with our understanding of the war in Vietnam and its frustrations; of the creation of new technologies for war and American enthusiasm for that technology; and of a technological military and the organizational research and a m am development structure created to support it. Within the defense establishment, the sensors were proposed within the context of a larger concept - that of a barrier to prevent the infiltration of troops and supplies from North Vietnam to the South. All of the discussion of the best way to fight in Vietnam is couched in the perception that this was a different kind of war than America was used to fighting. The emphasis was on countering the problems posed by guerrilla/revolutionary warfare and eventually by the apparent constraints of being involved in a military action, not an outright war. The American response was to find the right technology to do the job - to control the war by applying a technological tincture to its wounds and to make the war familiar and fightable on American terms. And, when doubts were raised about the effectiveness of applying existing technologies (namely, the bombing of North Vietnam and Laos), the doubters turned to new technologies. The sensors that were developed for use in Vietnam were a direct product of this sort of thinking - on the part of the engineers at Sandia who created the sensors, the civilian scientific advisors who recommended them, and, ultimately, the soldiers in the field who had to use them.

More Details

Perimeter security for Minnesota correctional facilities

Spencer, D.D.

For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

More Details

Photovoltaics in the Department of Defense

Chapman, R.N.

This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense`s Tri-Service Photovoltaic Review Committee and the committee`s strategic plan to realize photovoltaic`s fall potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic`s potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today`s prices. The paper describes photovoltaic`s potential within the Department of Defense, the status and features of the 2.1 MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s.

More Details

Recent results of high heat flux testing at the Plasma Materials Test Facility

Watson, Robert D.

High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories in Albuquerque, New Mexico. This facility, an official Department of Energy User Facility, has been in operation for over 15 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton, the DIII-D tokamak pt General Atomics, and Alcator C-Mod at MIT, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux burnout tests, braze reliability tests, and safety related tests. The program`s main focus now is on testing of beryllium and tungsten armor tiles bonded to divertor, limiter, and first wall components for the International Thermonuclear Experimental Reactor (ITER). The ITER project is a collaboration among the US, EU, RF, and Japanese fusion programs. This article provides a brief overview of the high heat flux testing capabilities at the PMTF, and describes some recent test results.

More Details
Results 92101–92200 of 96,771
Results 92101–92200 of 96,771