Publications

3 Results

Search results

Jump to search filters

Constraint-based interactive assembly planning

Proceedings - IEEE International Conference on Robotics and Automation

Wilson, R.H.

Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. This paper describes the principles and implementation of a framework that supports a wide variety of user-specified constraints for interactive assembly planning. Constraints from many sources can be expressed on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. All constraints are implemented as filters that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables a natural plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to several complex assemblies.

More Details

A framework for geometric reasoning about tools in assembly

Wilson, R.H.

When assembling a product, humans, robots, and other automation employ a variety of tools to manipulate, attach, and test parts and subassemblies. This paper proposes a framework lo represent and reason about geometric accessibility constraints for a wide variety of assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is an instance of the FINDPLACE problem. In addition, we present more efficient methods lo integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method preprocesses a single tool application for all possible states of assembly of a product. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. We describe experiments with an initial implementation of the framework and a library of seven tools.

More Details

Assembly sequencing with toleranced parts

Wilson, R.H.

The goal of assembly sequencing is to plan a feasible series of operations to construct a product from its individual parts. Previous research has thoroughly investigated assembly sequencing under the assumption that parts have nominal geometry. This paper considers the case where parts have toleranced geometry. Its main contribution is an efficient procedure that decides if a product admits an assembly sequence with infinite translations that is feasible for all possible instances of the components within the specified tolerances. If the product admits one such sequence, the procedure can also generate it. For the cases where there exists no such assembly sequence, another procedure is proposed which generates assembly sequences that are feasible only for some values of the toleranced dimensions. If this procedure produces no such sequence, then no instance of the product is assemblable. Finally, this paper analyzes the relation between assembly and disassembly sequences in the presence of toleranced parts. This work assumes a simple, but non-trivial tolerance language that falls short of capturing all imperfections of a manufacturing process. Hence, it is only one step toward assembly sequencing with toleranced parts.

More Details
3 Results
3 Results