Publications

Results 3976–4000 of 99,299

Search results

Jump to search filters

Quantifying the effect of CO2 gasification on pulverized coal char oxy-fuel combustion

Proceedings of the Combustion Institute

Shaddix, Christopher R.; Hecht, Ethan S.; Gonzalo-Tirado, Cristina; Haynes, Brian S.

Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.

More Details

Effectiveness of Warm-Start PPO for Guidance with Highly Constrained Nonlinear Fixed-Wing Dynamics

Proceedings of the American Control Conference

Coletti, Christian; Williams, Kyle; Lehman, Hannah C.; Kakish, Zahi; Whitten, Daniel; Parish, Julie M.

Reinforcement learning (RL) may enable fixedwing unmanned aerial vehicle (UAV) guidance to achieve more agile and complex objectives than typical methods. However, RL has yet struggled to achieve even minimal success on this problem; fixed-wing flight with RL-based guidance has only been demonstrated in literature with reduced state and/or action spaces. In order to achieve full 6-DOF RL-based guidance, this study begins training with imitation learning from classical guidance, a method known as warm-staring (WS), before further training using Proximal Policy Optimization (PPO). We show that warm starting is critical to successful RL performance on this problem. PPO alone achieved a 2% success rate in our experiments. Warm-starting alone achieved 32% success. Warm-starting plus PPO achieved 57% success over all policies, with 40% of policies achieving 94% success.

More Details

Predicting Voltage Changes in Low-Voltage Secondary Networks using Deep Neural Networks

2023 IEEE Power and Energy Conference at Illinois, PECI 2023

Yusuf, Jubair; Azzolini, Joseph A.; Reno, Matthew J.

High penetrations of residential solar PV can cause voltage issues on low-voltage (LV) secondary networks. Distribution utility planners often utilize model-based power flow solvers to address these voltage issues and accommodate more PV installations without disrupting the customers already connected to the system. These model-based results are computationally expensive and often prone to errors. In this paper, two novel deep learning-based model-free algorithms are proposed that can predict the change in voltages for PV installations without any inherent network information of the system. These algorithms will only use the real power (P), reactive power (Q), and voltage (V) data from Advanced Metering Infrastructure (AMI) to calculate the change in voltages for an additional PV installation for any customer location in the LV secondary network. Both algorithms are tested on three datasets of two feeders and compared to the conventional model-based methods and existing model-free methods. The proposed methods are also applied to estimate the locational PV hosting capacity for both feeders and have shown better accuracies compared to an existing model-free method. Results show that data filtering or pre-processing can improve the model performance if the testing data point exists in the training dataset used for that model.

More Details

Design and Analysis of Hydromine for Harvesting Energy from Ocean Currents with No External Moving Parts

OCEANS 2023 - Limerick, OCEANS Limerick 2023

Houchens, Brent C.; Develder, Nathaniel; Krath, Elizabeth H.; Lewis, James M.; Sproul, Evan G.; Udoh, Ikpoto E.; Westergaard, Carsten H.

The novel Hydromine harvests energy from flowing water with no external moving parts, resulting in a robust system with minimal environmental impact. Here two deployment scenarios are considered: an offshore floating platform configuration to capture energy from relatively steady ocean currents at megawatt-scale, and a river-based system at kilowatt-scale mounted on a pylon. Hydrodynamic and techno-economic models are developed. The hydrodynamic models are used to maximize the efficiency of the power conversion. The techno-economic models optimize the system size and layout and ultimately seek to minimize the levelized-cost-of-electricity produced. Parametric and sensitivity analyses are performed on the models to optimize performance and reduce costs.

More Details

Analysis of Holography Techniques for Phase Distortion Removal in Extreme Environments

AIAA SciTech Forum and Exposition, 2023

Mcmaster, Anthony M.; Guildenbecher, Daniel; Mazumdar, Yi C.

Holography is an effective diagnostic for the three-dimensional imaging of multiphase and particle-laden flows. Traditional digital inline holography (DIH), however, is subject to distortions from phase delays caused by index-of-refraction changes. This prevents DIH from being implemented in extreme conditions where shockwaves and significant thermal gradients are present. To overcome this challenge, multiple techniques have been developed to correct for the phase distortions. In this work, several holography techniques for distortion removal are discussed, including digital off-axis holography, phase conjugate digital in-line holography, and electric field techniques. Then, a distortion cancelling off-axis holography configuration is implemented for distortion removal and a high-magnification phase conjugate system is evaluated. Finally, both diagnostics are applied to study extreme pyrotechnic igniter environments.

More Details

Terahertz Photoconductive Metasurface Detector with enhanced Two-Step Photon Absorption at 1550 nm

CLEO: Science and Innovations, CLEO:S and I 2023

Jung, Hyunseung; Hale, Lucy L.; Briscoe, Jayson; Sarma, Raktim S.; Luk, Ting S.; Addamane, Sadhvikas J.; Reno, John L.; Brener, Igal; Mitrofanov, Oleg

We demonstrate the use of low-temperature grown GaAs (LT-GaAs) metasurface as an ultrafast photoconductive switching element gated with 1550 nm laser pulses. The metasurface is designed to enhance a weak two-step photon absorption at 1550 nm, enabling THz pulse detection.

More Details

Top-Down Control Design Strategy for Electric Power Grid EMP (E3) Protection

2023 IEEE Texas Power and Energy Conference, TPEC 2023

Donnelly, Timothy J.; Wilson, David G.; Robinett, Rush D.; Weaver, Wayne W.

A high altitude electromagnetic pulse (HEMP) caused by a nuclear explosion has the potential to severely impact the operation of large-scale electric power grids. This paper presents a top-down mitigation design strategy that considers grid-wide dynamic behavior during a simulated HEMP event - and uses optimal control theory to determine the compensation signals required to protect critical grid assets. The approach is applied to both a standalone transformer system and a demonstrative 3-bus grid model. The performance of the top-down approach relative to conventional protection solutions is evaluated, and several optimal control objective functions are explored. Finally, directions for future research are proposed.

More Details

Editorial: Neuroscience, computing, performance, and benchmarks: Why it matters to neuroscience how fast we can compute

Frontiers in Neuroinformatics

Awile, Omar; Knight, James C.; Nowotny, Thomas; Aimone, James B.; Diesmann, Markus; Schurmann, Felix

At the turn of the millennium the computational neuroscience community realized that neuroscience was in a software crisis: software development was no longer progressing as expected and reproducibility declined. The International Neuroinformatics Coordinating Facility (INCF) was inaugurated in 2007 as an initiative to improve this situation. The INCF has since pursued its mission to help the development of standards and best practices. In a community paper published this very same year, Brette et al. tried to assess the state of the field and to establish a scientific approach to simulation technology, addressing foundational topics, such as which simulation schemes are best suited for the types of models we see in neuroscience. In 2015, a Frontiers Research Topic “Python in neuroscience” by Muller et al. triggered and documented a revolution in the neuroscience community, namely in the usage of the scripting language Python as a common language for interfacing with simulation codes and connecting between applications. The review by Einevoll et al. documented that simulation tools have since further matured and become reliable research instruments used by many scientific groups for their respective questions. Open source and community standard simulators today allow research groups to focus on their scientific questions and leave the details of the computational work to the community of simulator developers. A parallel development has occurred, which has been barely visible in neuroscientific circles beyond the community of simulator developers: Supercomputers used for large and complex scientific calculations have increased their performance from ~10 TeraFLOPS (1013 floating point operations per second) in the early 2000s to above 1 ExaFLOPS (1018 floating point operations per second) in the year 2022. This represents a 100,000-fold increase in our computational capabilities, or almost 17 doublings of computational capability in 22 years. Moore's law (the observation that it is economically viable to double the number of transistors in an integrated circuit every other 18–24 months) explains a part of this; our ability and willingness to build and operate physically larger computers, explains another part. It should be clear, however, that such a technological advancement requires software adaptations and under the hood, simulators had to reinvent themselves and change substantially to embrace this technological opportunity. It actually is quite remarkable that—apart from the change in semantics for the parallelization—this has mostly happened without the users knowing. The current Research Topic was motivated by the wish to assemble an update on the state of neuroscientific software (mostly simulators) in 2022, to assess whether we can see more clearly which scientific questions can (or cannot) be asked due to our increased capability of simulation, and also to anticipate whether and for how long we can expect this increase of computational capabilities to continue.

More Details

An Assessment of the Laminar Hypersonic Double-Cone Experiments in the LENS-XX Tunnel

AIAA Journal

Ray, Jaideep; Blonigan, Patrick J.; Phipps, Eric T.; Maupin, Kathryn A.

This is an investigation on two experimental datasets of laminar hypersonic flows, over a double-cone geometry, acquired in Calspan—University at Buffalo Research Center’s Large Energy National Shock (LENS)-XX expansion tunnel. These datasets have yet to be modeled accurately. A previous paper suggested that this could partly be due to mis-specified inlet conditions. The authors of this paper solved a Bayesian inverse problem to infer the inlet conditions of the LENS-XX test section and found that in one case they lay outside the uncertainty bounds specified in the experimental dataset. However, the inference was performed using approximate surrogate models. In this paper, the experimental datasets are revisited and inversions for the tunnel test-section inlet conditions are performed with a Navier–Stokes simulator. The inversion is deterministic and can provide uncertainty bounds on the inlet conditions under a Gaussian assumption. It was found that deterministic inversion yields inlet conditions that do not agree with what was stated in the experiments. An a posteriori method is also presented to check the validity of the Gaussian assumption for the posterior distribution. This paper contributes to ongoing work on the assessment of datasets from challenging experiments conducted in extreme environments, where the experimental apparatus is pushed to the margins of its design and performance envelopes.

More Details

Development of a new IEC Technical Report on Cybersecurity Risk Management for I&C and ES in Nuclear Power Plants

Proceedings of 13th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies, NPIC and HMIT 2023

Rowland, Mike; Quinn, Edward L.; Sladek, John

The International Electrotechnical Commission (IEC) Subcommittee SC45A has been active in development of cybersecurity standards and technical reports on the protection of Instrumentation and Control (I&C) and Electrical Power Systems (ES) that perform significant functions necessary for the safe and secure operation of Nuclear Power Plants (NPP). These international standards and reports advance and promote the implementation of good practices around the world. In recent years, there have been advances in NPP cybersecurity risk management nationally and internationally. For example, IAEA publications NSS 17-T [1] and NSS 33-T [2], propose a framework for computer security risk management that implements a risk management program at both the facility and individual system levels. These international approaches (i.e., IAEA), national approaches (e.g., Canada’s HTRA [3]) and technical methods (e.g., HAZCADS [4], Cyber Informed Engineering [5], France’s EBIOS [6]) have advanced risk management within NPP cybersecurity programmes that implement international and national standards. This paper summarizes key elements of the analysis that developed the new IEC Technical Report. The paper identifies the eleven challenges for applying ISO/IEC 27005:2018 [7]. cybersecurity risk management to I&C Systems and EPS of NPPs and a summary comparison of how national approaches address these challenges.

More Details

INVESTIGATION OF THEORETICAL SOLUTIONS TO A BOTTOM-RAISED OSCILLATING SURGE WAVE ENERGY CONVERTER (OSWEC) THROUGH EXPERIMENTAL AND PARAMETRIC STUDIES

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Foulk, James W.; Davis, Jacob; Sharman, Krish; Tom, Nathan; Husain, Salman

Experiments were conducted on a wave tank model of a bottom raised oscillating surge wave energy converter (OSWEC) model in regular waves. The OSWEC model shape was a thin rectangular flap, which was allowed to pitch in response to incident waves about a hinge located at the intersection of the flap and the top of the supporting foundation. Torsion springs were added to the hinge in order to position the pitch natural frequency at the center of the wave frequency range of the wave maker. The flap motion as well as the loads at the base of the foundation were measured. The OSWEC was modeled analytically using elliptic functions in order to obtain closed form expressions for added mass and radiation damping coefficients, along with the excitation force and torque. These formulations were derived and reported in a previous publication by the authors. While analytical predictions of the foundation loads agree very well with experiments, large discrepancies are seen in the pitch response close to resonance. These differences are analyzed by conducting a sensitivity study, in which system parameters, including damping and added mass values, are varied. The likely contributors to the differences between predictions and experiments are attributed to tank reflections, standing waves that can occur in long, narrow wave tanks, as well as the thin plate assumption employed in the analytical approach.

More Details

HAZARD ASSESSMENT OF FIRE CONSEQUENCES FROM A FUEL STORAGE EXPLOSION

Proceedings of the Thermal and Fluids Engineering Summer Conference

Brown, Alexander L.; Shurtz, Randy C.; Wilke, Jason

Two relatively under-reported facets of fuel storage fire safety are examined in this work for a 250, 000 gallon two-tank storage system. Ignition probability is linked to the radiative flux from a presumed fire. First, based on observed features of existing designs, fires are expected to be largely contained within a designed footprint that will hold the full spilled contents of the fuel. The influence of the walls and the shape of the tanks on the magnitude of the fire is not a well-described aspect of conventional fire safety assessment utilities. Various resources are herein used to explore the potential hazard for a contained fire of this nature. Second, an explosive attack on the fuel storage has not been widely considered in prior work. This work explores some options for assessing this hazard. The various methods for assessing the constrained conventional fires are found to be within a reasonable degree of agreement. This agreement contrasts with the hazard from an explosive dispersal. Best available assessment techniques are used, which highlight some inadequacies in the existing toolsets for making predictions of this nature. This analysis, using the best available tools, suggests the offset distance for the ignition hazard from a fireball will be on the same order as the offset distance for the blast damage. This suggests the buy-down of risk by considering the fireball is minimal when considering the blast hazards. Assessment tools for the fireball predictions are not particularly mature, and ways to improve them for a higher-fidelity estimate are noted.

More Details

APPLICATION OF SECURE ELEMENTS TO ENHANCE REAL-TIME CONTINUOUS MONITORING AND CONFIGURATION

International Conference on Nuclear Engineering, Proceedings, ICONE

Rowland, Mike; Karch, Benjamin; Maccarone, Lee

The research investigates novel techniques to enhance supply chain security via addition of configuration management controls to protect Instrumentation and Control (I&C) systems of a Nuclear Power Plant (NPP). A secure element (SE) is integrated into a proof-of-concept testbed by means of a commercially available smart card, which provides tamper resistant key storage and a cryptographic coprocessor. The secure element simplifies setup and establishment of a secure communications channel between the configuration manager and verification system and the I&C system (running OpenPLC). This secure channel can be used to provide copies of commands and configuration changes of the I&C system for analysis.

More Details

ULTRA-HIGH-G BALLISTIC IMPACT INTO WATER TARGETS

Proceedings of the 16th Hypervelocity Impact Symposium, HVIS 2022

Wilson, Natasha; White, Caleb; Chen, Alex; Curtis, Shane; Lifke, Donald

Creation of a Sandia internally developed, shock-hardened Recoverable Data Recorder (RDR) necessitated experimentation by ballistically-firing the device into water targets at velocities up to 5,000 ft/s. The resultant mechanical environments were very severe—routinely achieving peak accelerations in excess of 200 kG and changes in pseudo-velocity greater than 38,000 inch/s. High-quality projectile deceleration datasets were obtained though high-speed imaging during the impact events. The datasets were then used to calibrate and validate computational models in both CTH and EPIC. Hydrodynamic stability in these environments was confirmed to differ from aerodynamic stability; projectile stability is maintained through a phenomenon known as “tail-slapping” or impingement of the rear of the projectile on the cavitation vapor-water interface which envelopes the projectile. As the projectile slows the predominate forces undergo a transition which is outside the codes’ capabilities to calculate accurately, however, CTH and EPIC both predict the projectile trajectory well in the initial hypervelocity regime. Stable projectile designs and the achievable acceleration space are explored through a large parameter sweep of CTH simulations. Front face chamfer angle has the largest influence on stability with low angles being more stable.

More Details

Vapor-Phase Halogenation of Hydrogen-Terminated Silicon(100) Using N-Halogen-succinimides

ACS Applied Materials and Interfaces

Raffaelle, Patrick R.; Wang, George T.; Shestopalov, Alexander A.

The focus of this study was to demonstrate the vaporphase halogenation of Si(100) and subsequently evaluate the inhibiting ability of the halogenated surfaces toward atomic layer deposition (ALD) of aluminum oxide (Al2O3). Hydrogen-terminated silicon ⟨100⟩ (H−Si(100)) was halogenated using N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), and N-iodosuccinimide (NIS) in a vacuum-based chemical process. The composition and physical properties of the prepared monolayers were analyzed by using X-ray photoelectron spectroscopy (XPS) and contact angle (CA) goniometry. These measurements confirmed that all three reagents were more effective in halogenating H−Si(100) over OH−Si(100) in the vapor phase. The stability of the modified surfaces in air was also tested, with the chlorinated surface showing the greatest resistance to monolayer degradation and silicon oxide (SiO2) generation within the first 24 h of exposure to air. XPS and atomic force microscopy (AFM) measurements showed that the succinimide-derived Hal-Si(100) surfaces exhibited blocking ability superior to that of H− Si(100), a commonly used ALD resist. This halogenation method provides a dry chemistry alternative for creating halogen-based ALD resists on Si(100) in near-ambient environments.

More Details

Design and Analysis of Hydromine for Harvesting Energy from Ocean Currents with No External Moving Parts

OCEANS 2023 - Limerick, OCEANS Limerick 2023

Houchens, Brent C.; Develder, Nathaniel; Krath, Elizabeth H.; Lewis, James M.; Sproul, Evan G.; Udoh, Ikpoto E.; Westergaard, Carsten H.

The novel Hydromine harvests energy from flowing water with no external moving parts, resulting in a robust system with minimal environmental impact. Here two deployment scenarios are considered: an offshore floating platform configuration to capture energy from relatively steady ocean currents at megawatt-scale, and a river-based system at kilowatt-scale mounted on a pylon. Hydrodynamic and techno-economic models are developed. The hydrodynamic models are used to maximize the efficiency of the power conversion. The techno-economic models optimize the system size and layout and ultimately seek to minimize the levelized-cost-of-electricity produced. Parametric and sensitivity analyses are performed on the models to optimize performance and reduce costs.

More Details

Performance Testing of Person Passable Openings to Evaluate Accepted Risk

Nuclear Science and Engineering

Rivera, W.G.; Sandt, Emily

Researchers at Sandia National Laboratories, in conjunction with the Nuclear Energy Institute and Light Water Reactor Sustainability Programs, have conducted testing and analysis to reevaluate and redefine the minimum passible opening size through which a person can effectively pass and navigate. Physical testing with a representative population has been performed on both simple two-dimensional (rectangular and circular cross sections up to 91.4 cm in depth) and more complex three-dimensional (circular cross sections of longer lengths up to 9.1 m and changes in direction) opening configurations. The primary impact of this effort is to define the physical design in which an adversary could successfully pass through a potentially complex opening, as well as to define the designs in which an adversary would not be expected to successfully traverse a complex opening. These data can then be used to support risk-informed decision making.

More Details

Temperature- and Strain-Rate-Dependent Mechanical Response of a 316 Stainless Steel

Conference Proceedings of the Society for Experimental Mechanics Series

Ku, Angela; Song, Bo

A comprehensive study of the mechanical response of a 316 stainless steel is presented. The split-Hopkinson bar technique was used to evaluate the mechanical behavior at dynamic strain rates of 500 s−1, 1500 s−1, and 3000 s−1 and temperatures of 22 °C and 300 °C under tension and compression loading, while the Drop-Hopkinson bar was used to characterize the tension behavior at an intermediate strain rate of 200 s−1. The experimental results show that the tension and compression flow stress are reasonably symmetric, exhibit positive strain rate sensitivity, and are inversely dependent on temperature. The true failure strain was determined by measuring the minimum diameter of the post-test tension specimen. The 316 stainless steel exhibited a ductile response, and the true failure strain increased with increasing temperature and decreased with increasing strain rate.

More Details

Wake interactions behind individual-tower multi-rotor wind turbine configurations

Journal of Physics: Conference Series

Brown, Kenneth A.; Cheung, Lawrence; Foulk, James W.; Maniaci, David C.; Hamilton, W.

Multiple rotors on single structures have long been proposed to increase wind turbine energy capture with no increase in rotor size, but at the cost of additional mechanical complexity in the yaw and tower designs. Standard turbines on their own very-closely-spaced towers avoid these disadvantages but create a significant disadvantage; for some wind directions the wake turbulence of a rotor enters the swept area of a very close downwind rotor causing low output, fatigue stress, and changes in wake recovery. Knowing how the performance of pairs of closely spaced rotors varies with wind direction is essential to design a layout that maximizes the useful directions and minimizes the losses and stress at other directions. In the current work, the high-fidelity large-eddy simulation (LES) code Exa-Wind/Nalu-Wind is used to simulate the wake interactions from paired-rotor configurations in a neutrally stratified atmospheric boundary layer to investigate performance and feasibility. Each rotor pair consists of two Vestas V27 turbines with hub-to-hub separation distances of 1.5 rotor diameters. The on-design wind direction results are consistent with previous literature. For an off-design wind direction of 26.6°, results indicate little change in power and far-wake recovery relative to the on-design case. At a direction of 45.0°, significant rotor-wake interactions produce an increase in power but also in far-wake velocity deficit and turbulence intensity. A severely off-design case is also considered.

More Details

Disrupting EV Charging Sessions and Gaining Remote Code Execution with DoS, MITM, and Code Injection Exploits using OCPP 1.6

2023 Resilience Week, RWS 2023

Elmo, David; Fragkos, Georgios; Johnson, Jay; Rohde, Kenneth; Salinas, Sean; Zhang, Junjie

Open Charge Point Protocol (OCPP) 1.6 is widely used in the electric vehicle (EV) charging industry to communicate between Charging System Management Services (CSMSs) and Electric Vehicle Supply Equipment (EVSE). Unlike OCPP 2.0.1, OCPP 1.6 uses unencrypted websocket communications to exchange information between EVSE devices and an on-premise or cloud-based CSMS. In this work, we demonstrate two machine-in-the-middle attacks on OCPP sessions to terminate charging sessions and gain root access to the EVSE equipment via remote code execution. Second, we demonstrate a malicious firmware update with a code injection payload to compromise an EVSE. Lastly, we demonstrate two methods to prevent availability of the EVSE or CSMS. One of these, originally reported by SaiFlow, prevents traffic to legitimate EVSE equipment using a DoS-like attack on CSMSs by repeatedly connecting and authenticating several CPs with the same identities as the legitimate CP. These vulnerabilities were demonstrated with proof-of-concept exploits in a virtualized Cyber Range at Wright State University and/or with a 350 kW Direct Current Fast Charger at Idaho National Laboratory. The team found that OCPP 1.6 could be protected from these attacks by adding secure shell tunnels to the protocol, if upgrading to OCPP 2.0.1 was not an option.

More Details

Formal Language Semantics for Triggered Enable Statecharts with a Run-to-Completion Scheduling

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Morris Wright, Karla V.; Hoang, Thai S.; Snook, Colin; Butler, Michael

The increased complexity of high-consequence digital system designs with intricate interactions between numerous components has placed a greater need on ensuring that the design satisfies its intended requirements. This digital assurance can only come about through rigorous mathematical analysis of the design. This manuscript provides a detailed description of a formal language semantics that can be used for modeling and verification of systems. We use Event-B to build a formalized semantics that supports the construction of triggered enable statecharts with a run-to-completion scheduling. Rodin has previously been used to develop and analyse models using this semantics.

More Details

Benefits of Using a Portable Coordinate Measurement Machine to Measure a Modal Test Geometry

Conference Proceedings of the Society for Experimental Mechanics Series

Carter, Steven P.

Visualization of mode shapes is a crucial step in modal analysis. However, the methods to create the test geometry, which typically require arduous hand measurements and approximations of rotation matrices, are crude. This leads to a lengthy test set-up process and a test geometry with potentially high measurement errors. Test and analysis delays can also be experienced if the orientation of an accelerometer is documented incorrectly, which happens more often than engineers would like to admit. To mitigate these issues, a methodology has been created to generate the test geometry (coordinates and rotation matrices) with probe data from a portable coordinate measurement machine (PCMM). This methodology has led to significant reductions in the test geometry measurement time, reductions in test geometry measurement errors, and even reduced test times. Simultaneously, a methodology has also been created to use the PCMM to easily identify desired measurement locations, as specified by a model. This paper will discuss the general framework of these methods and the realized benefits, using examples from actual tests.

More Details

High Strain Rate Compressive Behavior of 3D Printed Liquid Crystal Elastomers

Conference Proceedings of the Society for Experimental Mechanics Series

Sanborn, Brett; Mistry, Devesh; Song, Bo; Yu, Kai; Long, Kevin N.; Yakacki, Christopher M.

Polymers are widely used as damping materials in vibration and impact applications. Liquid crystal elastomers (LCEs) are a unique class of polymers that may offer the potential for enhanced energy absorption capacity under impact conditions over conventional polymers due to their ability to align the nematic phase during loading. Being a relatively new material, the high rate compressive properties of LCEs have been minimally studied. Here, we investigated the high strain rate compression behavior of different solid LCEs, including cast polydomain and 3D-printed, preferentially oriented monodomain samples. Direct ink write (DIW) 3D printed samples allow unique sample designs, namely, a specific orientation of mesogens with respect to the loading direction. Loading the sample in different orientations can induce mesogen rotation during mechanical loading and subsequently different stress-strain responses under impact. We also used a reference polymer, bisphenol-A (BPA) cross-linked resin, to contrast LCE behavior with conventional elastomer behavior.

More Details

Water narratives in local newspapers within the United States

Frontiers in Environmental Science

Sweitzer, Matthew D.; Gunda, Thushara; Gilligan, Jonathan M.

Sustainable use of water resources continues to be a challenge across the globe. This is in part due to the complex set of physical and social behaviors that interact to influence water management from local to global scales. Analyses of water resources have been conducted using a variety of techniques, including qualitative evaluations of media narratives. This study aims to augment these methods by leveraging computational and quantitative techniques from the social sciences focused on text analyses. Specifically, we use natural language processing methods to investigate a large corpus (approx. 1.8M) of newspaper articles spanning approximately 35 years (1982–2017) for insights into human-nature interactions with water. Focusing on local and regional United States publications, our analysis demonstrates important dynamics in water-related dialogue about drinking water and pollution to other critical infrastructures, such as energy, across different parts of the country. Our assessment, which looks at water as a system, also highlights key actors and sentiments surrounding water. Extending these analytical methods could help us further improve our understanding of the complex roles of water in current society that should be considered in emerging activities to mitigate and respond to resource conflicts and climate change.

More Details
Results 3976–4000 of 99,299
Results 3976–4000 of 99,299