High Performance 2.5D interposer for RF Applications
Abstract not provided.
Abstract not provided.
This document provides the instructions for participating in the 2021 blind photovoltaic (PV) modeling intercomparison organized by the PV Performance Modeling Collaborative (PVPMC). It describes the system configurations, metadata, and other information necessary for the modeling exercise. The practical details of the validation datasets are also described. The datasets were published online in open access in April 2023, after completing the analysis of the results.
CAD Computer Aided Design
We propose primal–dual mesh optimization algorithms that overcome shortcomings of the standard algorithm while retaining some of its desirable features. “Hodge-Optimized Triangulations” defines the “HOT energy” as a bound on the discretization error of the diagonalized Delaunay Hodge star operator. HOT energy is a natural choice for an objective function, but unstable for both mathematical and algorithmic reasons: it has minima for collapsed edges, and its extrapolation to non-regular triangulations is inaccurate and has unbounded minima. We propose a different extrapolation with a stronger theoretical foundation, and avoid extrapolation by recalculating the objective just beyond the flip threshold. We propose new objectives, based on normalizations of the HOT energy, with barriers to edge collapses and other undesirable configurations. We propose mesh improvement algorithms coupling these. When HOT optimization nearly collapses an edge, we actually collapse the edge. Otherwise, we use the barrier objective to update positions and weights and remove vertices. By combining discrete connectivity changes with continuous optimization, we more fully explore the space of possible meshes and obtain higher quality solutions.
Abstract not provided.
Advances in Applied Ceramics
CuCr2O4 spinel is a candidate coating material for central receivers in concentrating solar power to protect structural alloys against high temperature oxidation and related degradation. Coating performance and microstructure of dip-coated and sintered coatings is dictated by the initial particle size of the CuCr2O4 and sintering temperature, but can be compromised by particle agglomeration. Here in this study, sub-micron particles were synthesised through the Pechini and modified Pechini sol–gel methods. Phase composition was confirmed via X-ray diffraction. Particle growth during calcination of the nanoparticles at different temperatures (650°C, 750°C, 850°C) and times (between 1 and 24 h) was measured via laser diffraction and scanning electron microscopy. The modified Pechini method displayed evidence of smaller particle sizes and greater agglomeration. The kinetics of particle growth observed are consistent with a diffusion limited inhibited grain growth model.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Annual report for landscaping project WDID 201C399840 inspections.
Abstract not provided.
Sandia National Laboratories (SNL) has developed a novel reduced order modeling approach. Prioritization of inputs is accomplished using Sobo' indices obtained through a more efficient variance-based global sensitivity analysis. To determine the Sobo' functions, simulated input values are aligned to collocation points to permit the use of Gauss-Lobatto integration, thereby reducing the number of simulation trials needed by more than an order of magnitude compared to standard Monte Carlo approaches. Furthermore, by leveraging the orthogonality of Legendre polynomials in conjunction with those same simulations at the collocation nodes, an efficient fitting method is developed to represent the Sobo' functions from which a reduced order model (ROM) is constructed. The developed method is both more efficient computationally, and the resulting ROM is more accurate. The efficacy of this technique is demonstrated on a nonlinear polynomial test function as well as the nonlinear Ishigami and Sobo' g functions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Process Safety and Environmental Protection
HyRAM+ is a toolkit that includes fast-running models for the unconstrained (i.e., no wall interactions) dispersion and flames for non-premixed fuels. The models were developed for use with hydrogen, but the toolkit was expanded to include propane and methane in a recent release. In this work we validate the dispersion and flame models for these additional fuels, based on reported literature data. The validation efforts spanned a range of release conditions, from subsonic to underexpanded jets and flames for a range of mass flow rates. In general, the dispersion model works well for both propane and methane although the width of the jet/plume is predicted to be wider than observed in some cases. The flame model tends to over-predict the induced buoyancy for low-momentum flames, while the radiative heat flux agrees with the experimental data reasonably well, for both fuels. The models could be improved but give acceptable predictions for propane and methane behavior for the purposes of risk assessment.
Abstract not provided.
Abstract not provided.