Publications

Results 2951–2975 of 99,299

Search results

Jump to search filters

Drop Interactions with the Conical Shock Structure Generated by a Mach 4.5 Projectile

AIAA Journal

Guildenbecher, Daniel; Delgado, Paul M.; White, Glen E.; Reardon, Sam M.; Lee Stauffacher, H.; Beresh, Steven J.; Daniel, Kyle A.

This work presents measurements of liquid drop deformation and breakup time behind approximately conical shock waves and evaluates the predictive capabilities of low-order models and correlations developed using planar shock experiments. A conical shock was approximated by firing a bullet at Mach 4.5 past a vertical column of water drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension were characterized using backlit stereo images taken at 500 kHz. The gas density and velocity fields experienced by the drops were estimated using a Reynolds-averaged Navier-Stokes simulation of the bullet. Classical correlations predict drop breakup times and deformation in error by a factor of 3 or more. The Taylor analogy breakup (TAB) model predicts deformed drop diameters that agree within the confidence bounds of the ensemble-averaged experimental values using a dimensionless constant C2 = 2 compared to the accepted value C2 = 2/3. Results demonstrate existing correlations are inadequate for predicting the drop response to the three-dimensional relaxation of the flowfield downstream of a conical-like shock and suggest the TAB model results represent a path toward improved predictions.

More Details

Designing Resilient Communities: A Consequence-Based Approach for Grid Investment Report Series (Final Report)

Broderick, Robert J.

As part of the project “Designing Resilient Communities (DRC): A Consequence-Based Approach for Grid Investment,” funded by the United States (US) Department of Energy’s (DOE) Grid Modernization Laboratory Consortium (GMLC), Sandia National Laboratories (Sandia) partnered with a variety of government, industry, and university participants to develop and test a framework for community resilience planning focused on modernization of the electric grid. This report provides a summary of the development, description, and demonstration of the resulting Resilient Community Design Framework.

More Details

CuCr2O4 particle growth and evolution across sol–gel routes and calcination profiles

Advances in Applied Ceramics

Billman, Julia; Reimanis, Ivar E.; Ambrosini, Andrea A.; Jackson, Gregory

CuCr2O4 spinel is a candidate coating material for central receivers in concentrating solar power to protect structural alloys against high temperature oxidation and related degradation. Coating performance and microstructure of dip-coated and sintered coatings is dictated by the initial particle size of the CuCr2O4 and sintering temperature, but can be compromised by particle agglomeration. Here in this study, sub-micron particles were synthesised through the Pechini and modified Pechini sol–gel methods. Phase composition was confirmed via X-ray diffraction. Particle growth during calcination of the nanoparticles at different temperatures (650°C, 750°C, 850°C) and times (between 1 and 24 h) was measured via laser diffraction and scanning electron microscopy. The modified Pechini method displayed evidence of smaller particle sizes and greater agglomeration. The kinetics of particle growth observed are consistent with a diffusion limited inhibited grain growth model.

More Details

Defender Policy Evaluation and Resource Allocation With MITRE ATT&CK Evaluations Data

IEEE Transactions on Dependable and Secure Computing

Outkin, Alexander V.; Schulz, Patricia V.; Schulz, Timothy; Tarman, Thomas D.; Pinar, Ali P.

Protecting against multi-step attacks of uncertain start times and duration forces the defenders into indefinite, always ongoing, resource-intensive response. To allocate resources effectively, the defender must analyze and respond to an uncertain stream of potentially undetected multiple multi-step attacks and take measures of attack and response intensity over time into account. Such response requires estimation of overall attack success metrics and evaluating effect of defender strategies and actions associated with specific attack steps on overall attack metrics. We present a novel game-theoretic approach GPLADD to attack metrics estimation and demonstrate it on attack data derived from MITRE's ATT&CK Framework and other sources. In GPLADD, the time to complete attack steps is explicit; the attack dynamics emerges from attack graph and attacker-defender capabilities and strategies and therefore reflects 'physics' of attacks. The time the attacker takes to complete an attack step is drawn from a probability distribution determined by attacker and defender strategies and capabilities. This makes time a physical constraint on attack success parameters and enables comparing different defender resource allocation strategies across different attacks. We solve for attack success metrics by approximating attacker-defender games as discrete-time Markov chains and show evaluation of return on detection investments associated with different attack steps. We apply GPLADD to MITRE's APT3 data from ATT&CK Framework and show that there are substantial and un-intuitive differences in estimated real-world vendor performance against a simplified APT3 attack. We focus on metrics that reflect attack difficulty versus attacker ability to remain hidden in the system after gaining control. This enables practical defender optimization and resource allocation against multi-step attacks.

More Details

Data-driven assessment of magnetic charged particle confinement parameter scaling in magnetized liner inertial fusion experiments on Z

Physics of Plasmas

Foulk, James W.; Mannion, Owen M.; Ruiz, Daniel E.; Jennings, Christopher A.; Knapp, P.F.; Gomez, Matthew R.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Slutz, Stephen A.; Ampleford, David J.; Beckwith, Kristian

In magneto-inertial fusion, the ratio of the characteristic fuel length perpendicular to the applied magnetic field R to the α-particle Larmor radius Q α is a critical parameter setting the scale of electron thermal-conduction loss and charged burn-product confinement. Using a previously developed deep-learning-based Bayesian inference tool, we obtain the magnetic-field fuel-radius product B R ∝ R / Q α from an ensemble of 16 magnetized liner inertial fusion (MagLIF) experiments. Observations of the trends in BR are consistent with relative trade-offs between compression and flux loss as well as the impact of mix from 1D resistive radiation magneto-hydrodynamics simulations in all but two experiments, for which 3D effects are hypothesized to play a significant role. Finally, we explain the relationship between BR and the generalized Lawson parameter χ. Our results indicate the ability to improve performance in MagLIF through careful tuning of experimental inputs, while also highlighting key risks from mix and 3D effects that must be mitigated in scaling MagLIF to higher currents with a next-generation driver.

More Details

A non-neutral generalized Ohm's law model for magnetohydrodynamics in the two-fluid regime

Physics of Plasmas

Crockatt, Michael M.; Shadid, John N.

A new non-neutral generalized Ohm's law (GOL) model for atomic plasmas is presented. This model differs from previous models of this type in that quasi-neutrality is not assumed at any point. Collisional effects due to ionization, recombination, and elastic scattering are included, and an expression for the associated plasma conductivity is derived. An initial set of numerical simulations are considered that compare the GOL model to a two-fluid model in the ideal (collisionless) case. The results demonstrate that solutions obtained from the two models are essentially indistinguishable in most cases when the ion-electron mass ratio is within the range of physical values for atomic plasmas. Additionally, some limitations of the model are discussed.

More Details
Results 2951–2975 of 99,299
Results 2951–2975 of 99,299