Comparing Programming Paradigms for Graph Algorithms
Abstract not provided.
Abstract not provided.
The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.
Abstract not provided.
Abstract not provided.
Computer Physics Communications
Peridynamics (PD) is a continuum theory that employs a nonlocal model to describe material properties. In this context, nonlocal means that continuum points separated by a finite distance may exert force upon each other. A meshless method results when PD is discretized with material behavior approximated as a collection of interacting particles. This paper describes how PD can be implemented within a molecular dynamics (MD) framework, and provides details of an efficient implementation. This adds a computational mechanics capability to an MD code, enabling simulations at mesoscopic or even macroscopic length and time scales. © 2008 Elsevier B.V.
Abstract not provided.
Nanoparticles are now more than ever being used to tailor materials function and performance in differentiating technologies because of their profound effect on thermo-physical, mechanical and optical properties. The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier, followed by solidification through solvent evaporation/drying/curing/sintering. Unfortunately processing particles as concentrated, fluidized suspensions into useful products remains an art largely because the effect of particle shape and volume fraction on fluidic properties and suspension stability remains unexplored in a regime where particle-particle interaction mechanics is prevalent. To achieve a stronger scientific understanding of the factors that control nanoparticle dispersion and rheology we have developed a multiscale modeling approach to bridge scales between atomistic and molecular-level forces active in dense nanoparticle suspensions. At the largest length scale, two 'coarse-grained' numerical techniques have been developed and implemented to provide for high-fidelity numerical simulations of the rheological response and dispersion characteristics typical in a processing flow. The first is a coupled Navier-Stokes/discrete element method in which the background solvent is treated by finite element methods. The second is a particle based method known as stochastic rotational dynamics. These two methods provide a new capability representing a 'bridge' between the molecular scale and the engineering scale, allowing the study of fluid-nanoparticle systems over a wide range of length and timescales as well as particle concentrations. To validate these new methodologies, multi-million atoms simulations explicitly including the solvent have been carried out. These simulations have been vital in establishing the necessary 'subgrid' models for accurate prediction at a larger scale and refining the two coarse-grained methodologies.
Abstract not provided.
Abstract not provided.
PLOS Computational Biology
Abstract not provided.
Journal of Theoretical Biology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamic model. This document details the implementation of a discrete peridynamic model within the LAMMPS molecular dynamic code. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized, and overviews the LAMMPS implementation. A nontrivial example problem is also included.
International Journal of Nonlinear Mechanics
Abstract not provided.
The Annals of New York Academy of Sciences
Abstract not provided.
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
Abstract not provided.
Chemically Induced Surface Evolution with Level-Sets--ChISELS--is a parallel code for modeling 2D and 3D material depositions and etches at feature scales on patterned wafers at low pressures. Designed for efficient use on a variety of computer architectures ranging from single-processor workstations to advanced massively parallel computers running MPI, ChISELS is a platform on which to build and improve upon previous feature-scale modeling tools while taking advantage of the most recent advances in load balancing and scalable solution algorithms. Evolving interfaces are represented using the level-set method and the evolution equations time integrated using a Semi-Lagrangian approach [1]. The computational meshes used are quad-trees (2D) and oct-trees (3D), constructed such that grid refinement is localized to regions near the surface interfaces. As the interface evolves, the mesh is dynamically reconstructed as needed for the grid to remain fine only around the interface. For parallel computation, a domain decomposition scheme with dynamic load balancing is used to distribute the computational work across processors. A ballistic transport model is employed to solve for the fluxes incident on each of the surface elements. Surface chemistry is computed by either coupling to the CHEMKIN software [2] or by providing user defined subroutines. This report describes the theoretical underpinnings, methods, and practical use instruction of the ChISELS 1.0 computer code.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.
Abstract not provided.
Proposed for publication in the Journal of Engineering Materials and Technology.
Molecular dynamics calculations are performed to study the effect of deformation sequence and history on the inelastic behavior of copper interfaces on the nanoscale. An asymmetric 45 deg tilt bicrystal interface is examined, representing an idealized high-angle grain boundary interface. The interface model is subjected to three different deformation paths: tension then shear, shear then tension, and combined proportional tension and shear. Analysis shows that path-history dependent material behavior is confined within a finite layer of deformation around the bicrystal interface. The relationships between length scale and interface properties, such as the thickness of the path-history dependent layer and the interface strength, are discussed in detail.