Digital electronics at the atomic scale
Abstract not provided.
Abstract not provided.
2021 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
Abstract not provided.
International Conference on Simulation of Semiconductor Processes and Devices, SISPAD
We present an efficient self-consistent implementation of the Non-Equilibrium Green Function formalism, based on the Contact Block Reduction method for fast numerical efficiency, and the predictor-corrector approach, together with the Anderson mixing scheme, for the self-consistent solution of the Poisson and Schrödinger equations. Then, we apply this quantum transport framework to investigate 2D horizontal Si:P δ-layer Tunnel Junctions. We find that the potential barrier height varies with the tunnel gap width and the applied bias and that the sign of a single charge impurity in the tunnel gap plays an important role in the electrical current.
International Conference on Simulation of Semiconductor Processes and Devices, SISPAD
The atomic precision advanced manufacturing (APAM) enabled vertical tunneling field effect transistor (TFET) presents a new opportunity in microelectronics thanks to the use of ultra-high doping and atomically abrupt doping profiles. We present modeling and assessment of the APAM TFET using TCAD Charon simulation. First, we show, through a combination of simulation and experiment, that we can achieve good control of the gated channel on top of a phosphorus layer made using APAM, an essential part of the APAM TFET. Then, we present simulation results of a preliminary APAM TFET that predict transistor-like current-voltage response despite low device performance caused by using large geometry dimensions. Future device simulations will be needed to optimize geometry and doping to guide device design for achieving superior device performance.
Chemistry - A European Journal
Ultradoping introduces unprecedented dopant levels into Si, which transforms its electronic behavior and enables its use as a next-generation electronic material. Commercialization of ultradoping is currently limited by gas-phase ultra-high vacuum requirements. Solvothermal chemistry is amenable to scale-up. However, an integral part of ultradoping is a direct chemical bond between dopants and Si, and solvothermal dopant-Si surface reactions are not well-developed. This work provides the first quantified demonstration of achieving ultradoping concentrations of boron (∼1e14 cm2) by using a solvothermal process. Surface characterizations indicate the catalyst cross-reacted, which led to multiple surface products and caused ambiguity in experimental confirmation of direct surface attachment. Density functional theory computations elucidate that the reaction results in direct B−Si surface bonds. This proof-of-principle work lays groundwork for emerging solvothermal ultradoping processes.
Communications Physics
Thin, high-density layers of dopants in semiconductors, known as δ-layer systems, have recently attracted attention as a platform for exploration of the future quantum and classical computing when patterned in plane with atomic precision. However, there are many aspects of the conductive properties of these systems that are still unknown. Here we present an open-system quantum transport treatment to investigate the local density of electron states and the conductive properties of the δ-layer systems. A successful application of this treatment to phosphorous δ-layer in silicon both explains the origin of recently-observed shallow sub-bands and reproduces the sheet resistance values measured by different experimental groups. Further analysis reveals two main quantum-mechanical effects: 1) the existence of spatially distinct layers of free electrons with different average energies; 2) significant dependence of sheet resistance on the δ-layer thickness for a fixed sheet charge density.
Abstract not provided.
Journal of Physics. Condensed Matter
Atomic precision advanced manufacturing (APAM) leverages the highly reactive nature of Si dangling bonds relative to H- or Cl-passivated Si to selectively adsorb precursor molecules into lithographically defined areas with sub-nanometer resolution. Due to the high reactivity of dangling bonds, this process is confined to ultra-high vacuum (UHV) environments, which currently limits its commercialization and broad-based appeal. In this work, we explore the use of halogen adatoms to preserve APAM-derived lithographic patterns outside of UHV to enable facile transfer into real-world commercial processes. Specifically, we examine the stability of H-, Cl-, Br-, and I-passivated Si(100) in inert N2 and ambient environments. Characterization with scanning tunneling microscopy and x-ray photoelectron spectroscopy (XPS) confirmed that each of the fully passivated surfaces were resistant to oxidation in 1 atm of N2 for up to 44 h. Varying levels of surface degradation and contamination were observed upon exposure to the laboratory ambient environment. Characterization by ex situ XPS after ambient exposures ranging from 15 min to 8 h indicated the Br– and I–passivated Si surfaces were highly resistant to degradation, while Cl–passivated Si showed signs of oxidation within minutes of ambient exposure. As a proof-of-principle demonstration of pattern preservation, a H–passivated Si sample patterned and passivated with independent Cl, Br, I, and bare Si regions was shown to maintain its integrity in all but the bare Si region post-exposure to an N2 environment. The successful demonstration of the preservation of APAM patterns outside of UHV environments opens new possibilities for transporting atomically-precise devices outside of UHV for integrating with non-UHV processes, such as other chemistries and commercial semiconductor device processes.
Abstract not provided.
MRS Bulletin
A materials synthesis method that we call atomic-precision advanced manufacturing (APAM), which is the only known route to tailor silicon nanoelectronics with full 3D atomic precision, is making an impact as a powerful prototyping tool for quantum computing. Quantum computing schemes using atomic (31P) spin qubits are compelling for future scale-up owing to long dephasing times, one- and two-qubit gates nearing high-fidelity thresholds for fault-tolerant quantum error correction, and emerging routes to manufacturing via proven Si foundry techniques. Multiqubit devices are challenging to fabricate by conventional means owing to tight interqubit pitches forced by short-range spin interactions, and APAM offers the required (Å-scale) precision to systematically investigate solutions. However, applying APAM to fabricate circuitry with increasing numbers of qubits will require significant technique development. Here, we provide a tutorial on APAM techniques and materials and highlight its impacts in quantum computing research. Finally, we describe challenges on the path to multiqubit architectures and opportunities for APAM technique development. Graphic Abstract: [Figure not available: see fulltext.]
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
The adsorption of AlCl3 on Si(100) and the effect of annealing the AlCl3-dosed substrate were studied to reveal key surface processes for the development of atomic-precision, acceptor-doping techniques. This investigation was performed via scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. At room temperature, AlCl3 readily adsorbed to the Si substrate dimers and dissociated to form a variety of species. Annealing the AlCl3-dosed substrate at temperatures below 450 °C produced unique chlorinated aluminum chains (CACs) elongated along the Si(100) dimer row direction. An atomic model for the chains is proposed with supporting DFT calculations. Al was incorporated into the Si substrate upon annealing at 450 °C and above, and Cl desorption was observed for temperatures beyond 450 °C. Al-incorporated samples were encapsulated in Si and characterized by secondary ion mass spectrometry (SIMS) depth profiling to quantify the Al atom concentration, which was found to be in excess of 1020 cm-3 across a ∼2.7 nm-thick δ-doped region. The Al concentration achieved here and the processing parameters utilized promote AlCl3 as a viable gaseous precursor for novel acceptor-doped Si materials and devices for quantum computing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.