An overview of the Ultra-Fast X-ray Imager (UXI) program at Sandia Labs
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results show that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
The Ultra-Fast X-ray Imager (UXI) program is an ongoing effort at Sandia National Laboratories to create high speed, multi-frame, time gated Read Out Integrated Circuits (ROICs), and a corresponding suite of photodetectors to image a wide variety of High Energy Density (HED) physics experiments on both Sandia's Z-Machine and the National Ignition Facility (NIF). The program is currently fielding a 1024 x 448 prototype camera with 25 μm pixel spatial resolution, 2 frames of in-pixel storage and the possibility of exchanging spatial resolution to achieve 4 or 8 frames of storage. The camera's minimum integration time is 2 ns. Minimum signal target is 1500 e-rms and full well is 1.5 million e-. The design and initial characterization results will be presented as well as a description of future imagers.
Proceedings of SPIE - The International Society for Optical Engineering
We have designed and produced an optical coating suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of petawatt (PW) class fs laser pulses of ∼ 900 nm center wavelength. We have produced such BBHR coatings consisting of TiO
Abstract not provided.
Nature Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We studied theoretically the laser-plasma interaction, and performed experiments to investigate the mechanisms giving rise to optical damage in Borosilicate glass using nanosecond laser pulses at wavelength 1064 nm. Our experimental result shows that the optical damage process generated by nanosecond laser pulses is the result of an optically induced plasma. The plasma is initiated when the laser irradiance frees electrons from the glass. Although it may be debated, the electrons are likely freed by multi-photon absorption and the number density grows via impact ionization. Later when the electron gas density reaches the critical density, the electron gas resonantly absorbs the laser beam through collective excitation since the laser frequency is equal to the plasma frequency. The laser energy absorbed through the collective excitation is much larger than the energy absorbed by multi-photon ionization and impact ionization. Our experimental result also shows the plasma survives until the end of the laser pulse and the optical damage occurs after the laser pulse ceases. The plasma decay releases heat to the lattice. This heat causes the glass to be molten and soft. It is only as the glass cools and solidifies that stresses induced by this process cause the glass to fracture and damage. We also show the experimental evidence of the change of the refractive index of the focusing region as the density of the electron gas changes from sub-critical to overcritical, and the reflection of the over-critical plasma. This reflection limits the electron gas density to be not much larger than the critical density. © 2012 SPIE.
Optics Express
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We discuss upgrades and development currently underway at the Z-Backlighter facility. Among them are a new optical parametric chirped pulse amplifier (OPCPA) front end, 94 cm × 42 cm multi layer dielectric (MLD) gratings, dichroic laser beam transport studies, 25 keV x-ray source development, and a major target area expansion. These upgrades will pave the way for short/long pulse, multi-frame, multi-color x-ray backlighting at the Z-Accelerator. © 2011 SPIE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Optics InfoBase Conference Papers
Generating circular polarization for ultra-intense lasers requires solutions beyond traditional transmissive waveplates which have insufficient bandwidth and pose nonlinear phase (B-integral) problems. We demonstrate a reflective design employing 3 metallic mirrors to gen-erate circular polarization. © 2010 Optical Society of America.
Proceedings of SPIE - The International Society for Optical Engineering
Sandia's Large Optics Coating Operation has extensive results of laser induced damage threshold (LIDT) testing of its anti-reflection (AR) and high reflection coatings on substrates pitch polished using ceria and washed in a process that includes an alumina wash step. The purpose of the alumina wash step is to remove residual polishing compound to minimize its role in laser damage. These LIDT tests are for multi longitudinal mode, ns class pulses at 1064 nm and 532 nm (NIF-MEL protocol) and mode locked, sub-ps class pulses at 1054 nm (Sandia measurements), and show reasonably high and adequate laser damage resistance for coatings in the beam trains of Sandia's Z-Backlighter terawatt and petawatt lasers. An AR coating in addition to coatings of our previous reports confirms this with LIDTs of 33.0 J/cm2 for 3.5 ns pulses and 1.8 J/cm2 for 350 fs pulses. In this paper, we investigate both ceria and zirconia in doublesided polishing (common for large flat Z-Backlighter laser optics) as they affect LIDTs of an AR coating on fused silica substrates washed with or without the alumina wash step. For these AR coated, double-sided polished surfaces, ceria polishing in general affords better resistance to laser damage than zirconia polishing and laser damage is less likely with the alumina wash step than without it. This is supported by specific results of laser damage tests with 3.5 ns, multi longitudinal mode, single shot pulses at 1064 nm and 532 nm, with 7.0 ns, single and multi longitudinal mode, single and multi shot pulses at 532 nm, and with 350 fs, mode-locked, single shot pulses at 1054 nm. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Abstract not provided.