Publications

Results 1–50 of 173

Search results

Jump to search filters

The kinetics of polyurethane structural foam formation: Foaming and polymerization

AIChE Journal

Rao, Rekha R.; Mondy, Lisa A.; Long, Kevin N.; Celina, Mathew C.; Roberts, Christine; Soehnel, Melissa; Wyatt, Nicholas B.; Brunini, Victor

Kinetic models have been developed to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI-10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, although it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transition temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. The kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent articles. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2945–2957, 2017.

More Details

Mechanical Behavior of MinK and FiberFrax Board Insulation Materials Under Battery Packaging Relevant Conditions

Long, Kevin N.; Stavig, Mark E.; Roberts, Christine; Mondy, Lisa A.

We present a new collection of data on the load-stress relaxation-unload behavior of MinK and FiberFrax Board (FF) insulation materials used as pellets in-line with thermal battery electrochemical stacks. Both materials were subjected to standard thermal preparations, and then tested at room temperature. Intermediate term stress relaxation tests are presented (order 104 minutes of relaxation) showing that FF relaxation is not significantly stress or deformation dependent, but MinK is moderately so. Moreover, stress-strain curves associated with specimen unloading, reloading, and unloading again are presented for both materials. FF and MinK are substantially different here. Acute material variability is observed though test conditions and material preparations are standardized. A modeling approach is presented to empirically estimate the amount of stress relaxation at room temperature, and from this state, represent the unloading stress-strain behavior of both materials. This effort provides a complete framework for representing (in an engineering sense) both materials in thermal battery performance simulations.

More Details

Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

Rao, Rekha R.; Roberts, Christine; Mondy, Lisa A.; Soehnel, Melissa; Johnson, Kyle L.; Lorenzo, Henry T.

Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

More Details

Final Report for LDRD: The Effect of Proppant Placement on Closure of Fractured Shale Gas Wells

Ingraham, Mathew D.; Bolintineanu, Dan S.; Rao, Rekha R.; Mondy, Lisa A.; Lechman, Jeremy B.; Quintana, Enrico C.; Bauer, Stephen J.

The recent boom in the oil and natural gas industry of hydraulic fracture of source rocks has caused a new era in oil and gas production worldwide. However, there are many parts of this process that are poorly understood and thus hard to control. One of the few things that can be controlled is the process of injection to create the fractures in the subsurface and the subsequent injection of proppants to maintain the permeability of the fractured formation, allowing hydrocarbons to be extracted. The goal of this work was to better understand the injection process and resulting proppant distribution in the fracture through a combination of lab-scale experiments and computational models.

More Details

Bubble-Size Evolution during Polyurethane Foam Expansion

Mondy, Lisa A.; Roberts, Christine; Soehnel, Grant; Brady, Casper; Shelden, Bion; Soehnel, Melissa; Garcia, Robert M.

We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane (PMDI) foam used to encapsulate electronic components or to produce lightweight structural parts. The polyurethane of interest is a chemically blown foam, where carbon dioxide is produced via the reaction of water, a blowing agent, and isocyanate. Here, we take a careful look at the evolution of the bubble sizes during blowing. This information will help the development of subgrid models to predict bubble formation, growth, coalescence and collapse, drainage, and, hence, eventually the development of engineering models to predict foam expansion into a mold. Close-up views of bubbles at a transparent wall of a narrow, temperature-controlled channel are recorded during the foaming reaction and analyzed with image processing. Because these bubbles are pressed against the wall, the bubble sizes in the last frames after the expansion has stopped are compared to scanning electron microscope (SEM) images of the interior of some of the cured samples to determine if the presence of the wall significantly changes the bubble sizes. In addition, diffusing wave spectroscopy (DWS) is used to determine the average bubble sizes across the width of a similar channel as the bubbles change with time. DWS also gives information about microstructural changes as bubbles rearrange upon bubble collapse or coalescence. In this paper we conclude qualitatively that the bubble size distribution is heavily dependent on the formulation of foam being tested, temperature, the height in the foam bar, the proximity to a wall, and the degree of over-packing.

More Details

A kinetic approach to modeling the manufacture of high density strucutral foam: Foaming and polymerization

Rao, Rekha R.; Mondy, Lisa A.; Noble, David R.; Brunini, Victor; Roberts, Christine; Long, Kevin N.; Soehnel, Melissa; Celina, Mathew C.; Wyatt, Nicholas B.; Thompson, Kyle

We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Thoughts on m odel improvements are also discussed.

More Details

Multilayer Coextrusion of Polymer Composites to Develop Organic Capacitors

International Polymer Processing

Mondy, Lisa A.; Bieg, Lothar F.; Spangler, Scott W.; Stavig, Mark E.; Schroeder, John L.; Rao, Rekha R.; Diantonio, Christopher

Multilayer coextrusion is applied to produce a tape containing layers of alternating electrical properties to demonstrate the potential for using coextrusion to manufacture capacitors. To obtain the desired properties, we develop two filled polymer systems, one for conductive layers and one for dielectric layers. We describe numerical models used to help determine the material and processing parameters that impact processing and layer stability. These models help quantify the critical ratios of densities and viscosities of the two layers to maintain stable layers, as well as the effect of increasing the flow rate of one of the two materials. The conducting polymer is based on polystyrene filled with a blend of low-melting-point eutectic metal and nickel particulate filler, as described by Mrozek et al. (2010). The appropriate concentrations of fillers are determined by balancing measured conductivity with processability in a twin screw extruder. Based on results of the numerical models and estimates of the viscosity of emulsions and suspensions, a dielectric layer composed of polystyrene filled with barium titanate is formulated. Despite the fact that the density of the dielectric filler is less than the metallic filler of the conductive phase, as well as rheological measurements that later showed that the dielectric formulation is not an ideal match to the viscosity of the conductive material, the two materials can be successfully coextruded if the flow rates of the two materials are not identical. A measurable capacitance of the layered structure is obtained.

More Details

The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems

Colloids and Surfaces A: Physicochemical and Engineering Aspects

Reichert, Matthew D.; Alvarez, Nicolas J.; Brooks, Carlton F.; Grillet, Anne M.; Mondy, Lisa A.; Anna, Shelley L.; Walker, Lynn M.

Pendant bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid-fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. The application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air-water interfaces over a wide range of curvatures as applied to both expansion/contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured properties is quantified and compared to other scaling relationships in the literature. The results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties.

More Details

Experiments to populate and validate a processing model for polyurethane foam. BKC 44306 PMDI-10

Mondy, Lisa A.; Bauer, Stephen J.; Hileman, Michael B.; Thompson, Kyle; Smith, David; Rao, Rekha R.; Shelden, Bion; Soehnel, Melissa; O'Hern, Timothy J.; Grillet, Anne M.; Celina, Mathew C.; Wyatt, Nicholas B.; Russick, Edward M.

We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

More Details

Thermophysical properties of BKC 44306 and BKC 44307 PMDI urethane solid and foams

Bauer, Stephen J.; Flint, Gregory M.; Mondy, Lisa A.

Accurate knowledge of thermophysical properties of urethane foam is considered extremely important for meaningful models and analyses to be developed of scenarios wherein the foam is heated. Its performance at temperature requires a solid understanding of the foam material properties at temperature. Also, foam properties vary with density/porosity. An experimental program to determine the thermal properties of the two foams and their parent solid urethane was developed in order to support development of a predictive model relating density and thermal properties from first principles. Thermal properties (thermal conductivity, diffusivity, and specific heat) of the foam were found to vary with temperatures from 26°C to 90°C. Thermal conductivity generally increases with increasing temperature for a given initial density and ranges from .0433 W/mK at 26°C to .0811 W/mK at 90°C; thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from .4101 mm2/s at 26°C to .1263 mm2/s at 90°C; and specific heat generally increases with increasing temperature for a given initial density and ranges from .1078 MJ/m3K at 26°C to .6323 MJ/m3K at 90°C. Thermal properties of the solid urethane were also found to vary with temperatures from 26°C to 90°C. Average thermal conductivity generally increases with increasing temperature for a given initial density and ranges from 0.126 to 0.131 W/mK at 26°C to 0.153 to 0.157 W/mK at 90°C; average thermal diffusivity generally decreases with increasing temperature for a given initial density and ranges from 0.142 to 0.147 mm2/s at 26°C to 0.124 to 0.125 mm2/s at 90°C; and average specific heat generally increases with increasing temperature for a given initial density and ranges from 0.889 to 0.899 MJ/m3K to 1.229 to 1.274 MJ/m3K at 90°C. The density of both foam and solid urethane decreased with increasing temperature.

More Details

Computational Mechanics for Heterogeneous Materials

Baczewski, Andrew D.; Yarrington, C.D.; Bond, Stephen D.; Erikson, William W.; Lehoucq, Rich; Mondy, Lisa A.; Noble, David R.; Pierce, Flint; Roberts, Christine; Van Swol, Frank B.

The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem. These fluctuations due to random microstructures also provide a means of characterizing the aleatory uncertainty in material properties at the mesoscale.

More Details

New composite separator pellet to increase power density and reduce size of thermal batteries

Mondy, Lisa A.; Evans, Lindsey; Roberts, Christine; Grillet, Anne M.; Soehnel, Melissa; Barringer, David A.; Diantonio, Christopher; Chavez, Thomas P.; Ingersoll, David; Hughes, Lindsey

We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

More Details
Results 1–50 of 173
Results 1–50 of 173