The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2021 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.
This is a progress report on thermal modeling for dual-purpose canister (DPCs) direct disposal that covers several available calculation methods and addresses creep and temperature-dependent properties in a salt repository. Three modeling approaches are demonstrated: A semi-analytical calculation method that uses linear solutions with superposition and imaging, to represent a central waste package in a larger array; A finite difference model of coupled thermal creep, implemented in FLAC2D; and An integrated finite difference thermal-hydrologic modeling approach for repositories in different generic host media, implemented in PFLOTRAN. These approaches are at different levels of maturity, and future work is expected to add refinements and establish the best applications for each.
Coupled poroelastic stressing and pore-pressure accumulation along pre-existing faults in deep basement contribute to recent occurrence of seismic events at subsurface energy exploration sites. Our coupled fluid-flow and geomechanical model describes the physical processes inducing seismicity corresponding to the sequential stimulation operations in Pohang, South Korea. Simulation results show that prolonged accumulation of poroelastic energy and pore pressure along a fault can nucleate seismic events larger than Mw3 even after terminating well operations. In particular the possibility of large seismic events can be increased by multiple-well operations with alternate injection and extraction that can enhance the degree of pore-pressure diffusion and subsequent stress transfer through a rigid and low-permeability rock to the fault. This study demonstrates that the proper mechanistic model and optimal well operations need to be accounted for to mitigate unexpected seismic hazards in the presence of the site-specific uncertainty such as hidden/undetected faults and stress regime.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2020 advances of the Geologic Disposal Safety Assessment (GDSA) Framework and PFLOTRAN development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of disposal options and generic sites. The capability is a framework called GDSA Framework that employs high-performance computing (HPC) capable codes PFLOTRAN and Dakota.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2020 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.
In model simulations of deep geologic repositories, UO2 fuel matrix degradation typically begins as soon as the waste package breaches and groundwater contacts the fuel surface. The initial degradation rate depends on the timing of these events, burnup of the fuel, temperature, and concentrations of dissolved reactants. Estimating the initial rate of degradation is fairly straightforward, but as UO2 corrosion products precipitate on the fuel surface and the movement of dissolved species between the fuel surface and environment is impeded by the precipitated solids, the rate is more difficult to quantify. At that point, calculating the degradation rate becomes a reactive-transport problem in which a large number of equations must be solved by iteration for a large number of grid cells at each time step. The consequence is that repository simulations, which are already expensive, become much more expensive, especially when hundreds or thousands of waste packages breach. The Fuel Matrix Degradation (FMD) model is the process model of the Spent Fuel and Waste Science and Technology (SFWST) campaign of the US Department of Energy (DOE). It calculates spent fuel degradation rates as a function of radiolysis, redox reactions, electrochemical reactions, alteration layer growth, and diffusion of reactants through the alteration layer. Like other similar fuel degradation process models, it is a complicated model requiring a large number of calculations and iterations at each time step.
Recent observations of seismic events at the subsurface energy exploration sites show that spatial and temporal correlations sometimes do not match the spatial order of the known or detected fault location from the injection well. This study investigates the coupled flow and geomechanical control on the patterns of induced seismicity along multiple basement faults that show an unusual spatiotemporal relation with induced seismicity occurring in the far field first, followed by the near field. Two possible geological scenarios considered are (1) the presence of conductive hydraulic pathway within the basement connected to the distant fault (hydraulic connectivity) and (2) no hydraulic pathway, but the coexistence of faults with mixed polarity (favorability to slip) as observed at Azle, TX. Based on the Coulomb stability analysis and seismicity rate estimates, simulation results show that direct pore pressure diffusion through a hydraulic pathway to the distant fault can generate a larger number of seismicity than along the fault close to the injection well. Prior to pore pressure diffusion, elastic stress transfer can initiate seismic activity along the favorably oriented fault, even at the longer distance to the well, which may explain the deep 2013–2014 Azle earthquake sequences. This study emphasizes that hydrological and geomechanical features of faults will locally control poroelastic coupling mechanisms, potentially influencing the spatiotemporal pattern of injection-induced seismicity, which can be used to infer subsurface architecture of fault/fracture networks.
Quantifying in-situ subsurface stresses and predicting fracture development are critical to reducing risks of induced seismicity and improving modern energy activities in the subsurface. In this work, we developed a novel integration of controlled mechanical failure experiments coupled with microCT imaging, acoustic sensing, modeling of fracture initiation and propagation, and machine learning for event detections and waveform characterization. Through additive manufacturing (3D printing), we were able to produce bassanite-gypsum rock samples with repeatable physical, geochemical and structural properties. With these "geoarchitected" rock, we provided the role of mineral texture orientation on fracture surface roughness. The impact of poroelastic coupling on induced seismicity has been systematically investigated to improve mechanistic understanding of post shut-in surge of induced seismicity. This research will set the groundwork for characterizing seismic waveforms by using multiphysics and machine learning approaches and improve the detection of low-magnitude seismic events leading to the discovery of hidden fault/fracture systems.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in fiscal year (FY) 2019 associated with FY19 Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.
The fluid injection into the subsurface perturbs the states of pore pressure and stress on the pre-existing faults, potentially causing earthquakes. In the multiphase flow system, the contrast of fluid and rock properties between different structures produces the changes in pressure gradients and subsequently stress fields. Assuming two-phase fluid flow (gas-water system) and poroelasticity, we simulate the three-layered formation including a basement fault, in which injection-induced pressure encounters the fault directly given injection scenarios. The single-phase poroelasticity model with the same setting is also conducted to evaluate the multiphase flow effects on poroelastic response of the fault to gas injection. Sensitivity tests are performed by varying the fault permeability. The presence of gaseous phase reduces the pressure buildup within the highly gas-saturated region, causing less Coulomb stress changes, whereas capillarity increases the pore pressure within the gas-water mixed region. Even though the gaseous plume does not approach the fault, the poroelastic stressing can affect the fault stability, potentially the earthquake occurrence.