Publications

Results 1–50 of 91

Search results

Jump to search filters

Custom-form iron trifluoride Li-batteries using material extrusion and electrolyte exchanged ionogels

Additive Manufacturing

Cardenas, Jorge A.; Bullivant, John P.; Wygant, Bryan R.; Lapp, Aliya S.; Bell, Nelson S.; Lambert, Timothy N.; Merrill, Laura C.; Talin, Albert A.; Cook, Adam; Allcorn, Eric; Harrison, Katharine L.

Custom-form factor batteries fabricated in non-conventional shapes can maximize the overall energy density of the systems they power, particularly when used in conjunction with energy dense materials (e.g., Li metal anodes and conversion cathodes). Additive manufacturing (AM), and specifically material extrusion (ME), have been shown as effective methods for producing custom-form cell components, particularly electrodes. However, the AM of several promising energy dense materials (conversion electrodes such as iron trifluoride) have yet to be demonstrated or optimized. Furthermore, the integration of multiple AM produced cell components, such as electrodes and separators, along with a custom package remains largely unexplored. In this work, iron trifluoride (FeF3) and ionogel (IG) separators are conformally printed using ME onto non-planar surfaces to enable the fabrication of custom-form Li-FeF3 batteries. To demonstrate printing on non-planar surfaces, cathodes and separators were deposited onto cylindrical rods using a 5-axis ME printer. ME printed FeF3 was shown to have performance commensurate with FeF3 cast using conventional means, both in coin cell and cylindrical rod formats, with capacities exceeding 700 mAh/g on the first cycle and ranging between 600 and 400 mAh/g over the next 50 cycles. Additionally, a ME process for printing polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) based IGs directly onto FeF3 is developed and enabled using an electrolyte exchange process. In coin cells, this process is shown to produce cells with similar capacity to cells built with Celgard separators out to 50 cycles, with the exception that cycling instabilities are observed during cycles 8–20. When using printed and exchanged IGs in a custom cylindrical cell package, 6 stable high-capacity cycles are achieved. Overall, this work demonstrates approaches for producing high-energy-density Li-FeF3 cells in coin and cylindrical rod formats, which are translatable to customized, arbitrary geometries compatible with ME printing and electrolyte exchange.

More Details

Developing a model for the impact of non-conformal lithium contact on electro-chemo-mechanics and dendrite growth

Cell Reports Physical Science

Meyer, Julia; Harrison, Katharine L.; Mukherjee, Partha P.; Roberts, Scott A.

Lithium dendrite growth hinders the use of lithium metal anodes in commercial batteries. We present a 3D model to study the mechanical and electrochemical mechanisms that drive microscale plating. With this model, we investigate electrochemical response across a lithium protrusion characteristic of rough anode surfaces, representing the separator as a porous polymer in non-conformal contact with a lithium anode. The impact of pressure on separator morphology and electrochemical response is of particular interest, as external pressure can improve cell performance. We explore the relationships between plating propensity, stack pressure, and material properties. External pressure suppresses lithium plating due to interfacial stress and separator pore closure, leading to inhomogeneous plating rates. For moderate pressures, dendrite growth is completely suppressed, as plating will occur in the electrolyte-filled gaps between anode and separator. In fast-charging conditions and systems with low electrolyte diffusivities, the benefits of pressure are overridden by ion transport limitations.

More Details

Evaluation of Lithium Metal Anode Volumetric Expansion through Laser Plasma Focused Ion Beam Cross-Sectional Imaging

Journal of the Electrochemical Society

Merrill, Laura C.; Gannon, Renae N.; Jungjohann, Katherine L.; Randolph, Steven J.; Goriparti, Subrahmanyam; Zavadil, Kevin R.; Johnson, David C.; Harrison, Katharine L.

Lithium metal is an ideal anode for high energy density batteries, however the implementation of lithium metal anodes remains challenging. Beyond the development of highly efficient electrolytes, degradation processes restrict cycle life and reduce practical energy density. Herein lithium volumetric expansion and degradation pathways are studied in half cells through coupling electrochemical analysis with cross-sectional imaging of the intact electrode stack using a cryogenic laser plasma focused ion beam and scanning electron microscope. We find that the volumetric capacity is compromised as early as the first cycle, at best reaching values only half the theoretical capacity (1033 vs 2045 mAh cm−3). By the 101st electrodeposition, the practical volumetric capacity decreases to values ranging from 143 to 343 mAh cm−3

More Details

Room-Temperature Pseudo-Solid-State Iron Fluoride Conversion Battery with High Ionic Conductivity

ACS Applied Materials and Interfaces

Lapp, Aliya S.; Merrill, Laura C.; Wygant, Bryan R.; Ashby, David S.; Bhandarkar, Austin; Zhang, Alan C.; Fuller, Elliot J.; Harrison, Katharine L.; Lambert, Timothy N.; Talin, Albert A.

Li-metal batteries (LMBs) employing conversion cathode materials (e.g., FeF3) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density. Pseudo-solid-state ionogel separators harness the energy density and safety advantages of solid-state LMBs, while alleviating key drawbacks (e.g., poor ionic conductivity and high interfacial resistance). In this work, a pseudo-solid-state conversion battery (Li-FeF3) is presented that achieves stable, high rate (1.0 mA cm–2) cycling at room temperature. The batteries described herein contain gel-infiltrated FeF3 cathodes prepared by exchanging the ionic liquid in a polymer ionogel with a localized high-concentration electrolyte (LHCE). The LHCE gel merges the benefits of a flexible separator (e.g., adaptation to conversion-related volume changes) with the excellent chemical stability and high ionic conductivity (~2 mS cm–1 at 25 °C) of an LHCE. The latter property is in contrast to previous solid-state iron fluoride batteries, where poor ionic conductivities necessitated elevated temperatures to realize practical power levels. Importantly, the stable, room-temperature Li-FeF3 cycling performance obtained with the LHCE gel at high current densities paves the way for exploring a range of architectures including flexible, three-dimensional, and custom shape batteries.

More Details

Role of Coatings as Artificial Solid Electrolyte Interphases on Lithium Metal Self-Discharge

Journal of Physical Chemistry C

Merrill, Laura C.; Long, Daniel M.; Small, Kathryn A.; Jungjohann, Katherine L.; Leung, Kevin; Bassett, Kimberly L.; Harrison, Katharine L.

Artificial solid electrolyte interphases have provided a path to improved cycle life for high energy density, next-generation anodes like lithium metal. Although long cycle life is necessary for widespread implementation, understanding and mitigating the effects of aging and self-discharge are also required. Here, we investigate several coating materials and their role in calendar life aging of lithium. We find that the oxide coatings are electronically passivating whereas the LiF coating slows charge transfer kinetics. Furthermore, the Coulombic loss during self-discharge measurements improves with the oxide layers and worsens with the LiF layer. It is found that none of the coatings create a continuous conformal, electronically passivating layer on top of the deposited lithium nor are they likely to distribute evenly through a porous deposit, suggesting that none of the materials are acting as an artificial solid electrolyte interphase. Instead, they likely alter performance through modulating lithium nucleation and growth.

More Details

Editorial for focus on nanophase materials for next-generation lithium-ion batteries and beyond

Nanotechnology

Harrison, Katharine L.; Meng, Xiangbo; Chen, Zonghai; Li, Jianlin; Lu, Wenquan; Sun, Xueliang

Lithium-ion batteries (LIBs) have revolutionized our society in many respects, and we are expecting even more favorable changes in our lifestyles with newer battery technologies. In pursuing such eligible batteries, nanophase materials play some important roles in LIBs and beyond technologies. Stimulated by their beneficial effects of nanophase materials, we initiated this Focus. Excitingly, this Focus collects 13 excellent original research and review articles related to the applications of nanophase materials in various rechargeable batteries, ranging from nanostructured electrode materials, nanoscale interface tailoring, novel separators, computational calculations, and advanced characterizations.

More Details

Are solid-state batteries safer than lithium-ion batteries?

Joule

Bates, Alex M.; Preger, Yuliya; Torres-Castro, Loraine; Harrison, Katharine L.; Harris, Stephen J.; Hewson, John C.

All-solid-state batteries are often assumed to be safer than conventional Li-ion ones. In this work, we present the first thermodynamic models to quantitatively evaluate solid-state and Li-ion battery heat release under several failure scenarios. The solid-state battery analysis is carried out with an Li7La3Zr2O12 solid electrolyte but can be extended to other configurations using the accompanying spreadsheet. We consider solid-state batteries that include a relatively small amount of liquid electrolyte, which is often added at the cathode to reduce interfacial resistance. While the addition of small amounts of liquid electrolyte increases heat release under specific failure scenarios, it may be small enough that other considerations, such as manufacturability and performance, are more important commercially. We show that short-circuited all-solid-state batteries can reach temperatures significantly higher than conventional Li-ion, which could lead to fire through flammable packaging and/or nearby materials. Our work highlights the need for quantitative safety analyses of solid-state batteries.

More Details

Revisiting Discharge Mechanism of CFx as a High Energy Density Cathode Material for Lithium Primary Battery

Advanced Energy Materials

Sayahpour, Baharak; Hirsh, Hayley; Bai, Shuang; Schorr, Noah B.; Lambert, Timothy N.; Mayer, Matthew; Bao, Wurigumula; Cheng, Diyi; Zhang, Minghao; Leung, Kevin; Harrison, Katharine L.; Li, Weikang; Meng, Ying S.

Lithium/fluorinated graphite (Li/CFx) primary batteries show great promise for applications in a wide range of energy storage systems due to their high energy density (>2100 Wh kg–1) and low self-discharge rate (<0.5% per year at 25 °C). While the electrochemical performance of the CFx cathode is indeed promising, the discharge reaction mechanism is not thoroughly understood to date. In this article, a multiscale investigation of the CFx discharge mechanism is performed using a novel cathode structure to minimize the carbon and fluorine additives for precise cathode characterizations. Titration gas chromatography, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, cross-sectional focused ion beam, high-resolution transmission electron microscopy, and scanning transmission electron microscopy with electron energy loss spectroscopy are utilized to investigate this system. Results show no metallic lithium deposition or intercalation during the discharge reaction. Crystalline lithium fluoride particles uniformly distributed with <10 nm sizes into the CFx layers, and carbon with lower sp2 content similar to the hard-carbon structure are the products during discharge. This article deepens the understanding of CFx as a high energy density cathode material and highlights the need for future investigations on primary battery materials to advance performance.

More Details

Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries

iScience

Harrison, Katharine L.; Merrill, Laura C.; Long, Daniel M.; Randolph, Steven J.; Goriparti, Subrahmanyam; Christian, Joseph; Warren, Benjamin A.; Roberts, Scott A.; Harris, Stephen J.; Perry, Daniel L.; Jungjohann, Katherine L.

Li metal anodes are enticing for batteries due to high theoretical charge storage capacity, but commercialization is plagued by dendritic Li growth and short circuits when cycled at high currents. Applied pressure has been suggested to improve morphology, and therefore performance. We hypothesized that increasing pressure would suppress dendritic growth at high currents. To test this hypothesis, here, we extensively use cryogenic scanning electron microscopy to show that varying the applied pressure from 0.01 to 1 MPa has little impact on Li morphology after one deposition. We show that pressure improves Li density and preserves Li inventory after 50 cycles. However, contrary to our hypothesis, pressure exacerbates dendritic growth through the separator, promoting short circuits. Therefore, we suspect Li inventory is better preserved in cells cycled at high pressure only because the shorts carry a larger portion of the current, with less being carried by electrochemical reactions that slowly consume Li inventory.

More Details

Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries

Nanotechnology

Mcbrayer, Josefine D.; Apblett, Christopher A.; Harrison, Katharine L.; Fenton, Kyle R.; Minteer, Shelley D.

A stable solid electrolyte interphase (SEI) layer is key to high performing lithium ion and lithium metal batteries for metrics such as calendar and cycle life. The SEI must be mechanically robust to withstand large volumetric changes in anode materials such as lithium and silicon, so understanding the mechanical properties and behavior of the SEI is essential for the rational design of artificial SEI and anode form factors. The mechanical properties and mechanical failure of the SEI are challenging to study, because the SEI is thin at only ∼10-200 nm thick and is air sensitive. Furthermore, the SEI changes as a function of electrode material, electrolyte and additives, temperature, potential, and formation protocols. A variety of in situ and ex situ techniques have been used to study the mechanics of the SEI on a variety of lithium ion battery anode candidates; however, there has not been a succinct review of the findings thus far. Because of the difficulty of isolating the true SEI and its mechanical properties, there have been a limited number of studies that can fully de-convolute the SEI from the anode it forms on. A review of past research will be helpful for culminating current knowledge and helping to inspire new innovations to better quantify and understand the mechanical behavior of the SEI. This review will summarize the different experimental and theoretical techniques used to study the mechanics of SEI on common lithium battery anodes and their strengths and weaknesses.

More Details

Effect of temperature and FEC on silicon anode heat generation measured by isothermal microcalorimetry

Journal of the Electrochemical Society

Arnot, David J.; Allcorn, Eric; Harrison, Katharine L.

Isothermal microcalorimetry (IMC) was used to better understand parasitic reactions and heat generation from Si electrodes in the first 10 cycles using Li/Si half cells. Heat generation from cell polarization (ohmic heat), entropy changes (reversible heat), and parasitic reactions (parasitic heat) are separated and quantified. The effect of temperature and fluoroethylene carbonate (FEC) as an electrolyte additive are also explored. Our results show that at the C/10 cycling rate used here, ohmic heat makes the largest contribution to overall heat generation while reversible heat is the smallest. Ohmic heat generation increases with cycle number due to increasing internal resistance, though the effect is smaller for cells with FEC. Interestingly, capacity-normalized parasitic heat generation is largely unaffected by changes in temperature despite differing reaction kinetics. We show that this is caused by a decrease in average parasitic reaction enthalpy as temperature is increased. Further, cells with FEC display higher average parasitic reaction enthalpy than cells without. The average parasitic reaction enthalpies for all the Si electrodes we tested were lower than previously reported values for graphite, indicating that the SEI formed on Si is less stable.

More Details

NMR spectroscopy of coin cell batteries with metal casings

Science Advances

Walder, Brennan J.; Conradi, Mark S.; Borchardt, John; Merrill, Laura C.; Sorte, Eric; Deichmann, Eric J.; Anderson, Travis M.; Alam, Todd M.; Harrison, Katharine L.

Battery cells with metal casings are commonly considered incompatible with nuclear magnetic resonance (NMR) spectroscopy because the oscillating radio-frequency magnetic fields ("rf fields") responsible for excitation and detection of NMR active nuclei do not penetrate metals. Here, we show that rf fields can still efficiently penetrate nonmetallic layers of coin cells with metal casings provided "B1 damming"configurations are avoided. With this understanding, we demonstrate noninvasive high-field in situ 7Li and 19F NMR of coin cells with metal casings using a traditional external NMR coil. This includes the first NMR measurements of an unmodified commercial off-the-shelf rechargeable battery in operando, from which we detect, resolve, and separate 7Li NMR signals from elemental Li, anodic β-LiAl, and cathodic LixMnO2 compounds. Real-time changes of β-LiAl lithium diffusion rates and variable β-LiAl 7Li NMR Knight shifts are observed and tied to electrochemically driven changes of the β-LiAl defect structure.

More Details

Uncovering the Relationship between Aging and Cycling on Lithium Metal Battery Self-Discharge

ACS Applied Energy Materials

Merrill, Laura C.; Rosenberg, Samantha G.; Jungjohann, Katherine L.; Harrison, Katharine L.

Lithium metal is considered the "holy grail"material to replace typical Li-ion anodes due to the absence of a host structure coupled with a high theoretical capacity. The absence of a host structure results in large volumetric changes when lithium is electrodeposited/dissolved, making the lithium prone to stranding and parasitic reactions with the electrolyte. Lithium research is focused on enabling highly reversible lithium electrodeposition/dissolution, which is important to achieving long cycle life. Understanding the various mechanisms of self-discharge is also critical for realizing practical lithium metal batteries but is often overlooked. In contrast to previous work, it is shown here that self-discharge via galvanic corrosion is negligible, particularly when lithium is cycled to relevant capacities. Rather, the continued electrochemical cycling of lithium metal results in self-discharge when periodic rest is applied during cycling. The extent of self-discharge can be controlled by increasing the capacity of plated lithium, tuning electrolyte chemistry, incorporating regular rest, or introducing lithiophilic materials. The Coulombic losses that occur during periodic rest are largely reversible, suggesting that the dominant self-discharge mechanism in this work is not an irreversible chemical process but rather a morphological process.

More Details

Degradation-resistant TiO2@Sn anodes for high-capacity lithium-ion batteries

Journal of Materials Science

Jungjohann, Katherine L.; Goriparti, Subrahmanyam; Harrison, Katharine L.

As the demand for higher-performance batteries has increased, so has the body of research on theoretical high-capacity anode materials. However, the research has been hindered because the high-capacity anode material properties and interactions are not well understood, largely due to the difficulty of observing cycling in situ. Using electrochemical scanning transmission electron microscopy (ec-STEM), we report the real-time observation and electrochemical analysis of pristine tin (Sn) and titanium dioxide-coated Sn (TiO2@Sn) electrodes during lithiation/delithiation. As expected, we observed a volume expansion of the pristine Sn electrodes during lithiation, but we further observed that the expansion was followed by Sn detachment from the current collector. Remarkably, although the TiO2@Sn electrodes also exhibited similar volume expansion during lithiation, they showed no evidence of Sn detachment. We found that the TiO2 surface layer acted as an electrochemically activated artificial solid-electrolyte interphase that serves to conduct Li ions. As a physical coating, it mechanically prevented Sn detachment following volume changes during cycling, providing significant degradation resistance and 80% Coulombic efficiency for a complete lithiation/delithiation cycle. Interestingly, upon delithiation, TiO2@Sn electrode displayed a self-healing mechanism of small pore formation in the Sn particle followed by agglomeration into several larger pores as delithiation continued.

More Details

Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries

Nanotechnology

Mcbrayer, Josefine D.; Apblett, Christopher A.; Harrison, Katharine L.; Fenton, Kyle R.; Minteer, Shelley

A stable solid electrolyte interphase (SEI) layer is key to high performing lithium ion batteries for metrics such as calendar and cycle life. The SEI must be mechanically robust to withstand large volumetric changes in anode materials such as lithium and silicon, so understanding the mechanical properties and behavior of the SEI is essential for the rational design of artificial SEI and anode form factors. The mechanical properties and mechanical failure of the SEI are challenging to study, because the SEI is thin at only ~ 10 – 200 nm thick and is air sensitive. Furthermore, the SEI changes as a function of electrode material, electrolyte and additives, temperature, potential, and formation protocols. A variety of in situ and ex situ techniques have been used to study the mechanics of the SEI on a variety of lithium ion battery anode candidates; however, there hasn't been a succinct review of the findings thus far. Because of the difficultly of isolating the true SEI and its mechanical properties, there have been a limited number of studies that can fully de-convolute the SEI from the anode it forms on. A review of past research will be helpful for culminating current knowledge and helping to inspire new innovations to better quantify and understand the mechanical behavior of the SEI. This review will summarize the different experimental and theoretical techniques used to study the mechanics of SEI on common lithium ion battery anodes and their strengths and weaknesses.

More Details

Effects of Applied Interfacial Pressure on Li-Metal Cycling Performance and Morphology in 4 M LiFSI in DME

ACS Applied Materials and Interfaces

Harrison, Katharine L.; Goriparti, Subrahmanyam; Merrill, Laura C.; Long, Daniel M.; Warren, Benjamin A.; Foulk, James W.; Perdue, Brian R.; Casias, Zachary; Cuillier, Paul; Boyce, Brad L.; Jungjohann, Katherine L.

Lithium-metal anodes can theoretically enable 10× higher gravimetric capacity than conventional graphite anodes. However, Li-metal anode cycling has proven difficult due to porous and dendritic morphologies, extensive parasitic solid electrolyte interphase reactions, and formation of dead Li. We systematically investigate the effects of applied interfacial pressure on Li-metal anode cycling performance and morphology in the recently developed and highly efficient 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane electrolyte. We present cycling, morphology, and impedance data at a current density of 0.5 mA/cm2 and a capacity of 2 mAh/cm2 at applied interfacial pressures of 0, 0.01, 0.1, 1, and 10 MPa. Cryo-focused ion beam milling and cryo-scanning electron microscopy imaging in cross section reveal that increasing the applied pressure during Li deposition from 0 to 10 MPa leads to greater than a fivefold reduction in thickness (and therefore volume) of the deposited Li. This suggests that pressure during cycling can have a profound impact on the practical volumetric energy density for Li-metal anodes. A "goldilocks zone"of cell performance is observed at intermediate pressures of 0.1-1 MPa. Increasing pressure from 0 to 1 MPa generally improves cell-to-cell reproducibility, cycling stability, and Coulombic efficiency. However, the highest pressure (10 MPa) results in high cell overpotential and evidence of soft short circuits, which likely result from transport limitations associated with increased pressure causing local pore closure in the separator. All cells exhibit at least some signs of cycling instability after 50 cycles when cycled to 2 mAh/cm2 with thin 50 μm Li counter electrodes, though instability decreases with increasing pressure. In contrast, cells cycled to only 1 mAh/cm2 perform well for 50 cycles, indicating that capacity plays an important role in cycling stability.

More Details

Silicon Consortium Project: No-Go on Moir Interferometry for Measuring SEI Strain as a Probe for Calendar Life Testing

Mcbrayer, Josefine D.; Serkland, Darwin K.; Fenton, Kyle R.; Apblett, Christopher A.; Minteer, Shelley; Harrison, Katharine L.

Silicon is a promising candidate as a next generation anode to replace or complement graphite electrodes due to its high energy density and low lithiation potential. When silicon is lithiated, it experiences over 300% expansion which stresses the silicon as well as its solid electrolyte interphase (SEI) leading to poor performance. The use of nano-sized silicon has helped to mitigate volume expansion and stress in the silicon, yet the silicon SEI is still both mechanically and chemically unstable. Identifying the mechanical failure mechanism of the SEI will help enhance calendar and cycle life performance through improved SEI design. In situ moiré interferometry was investigated to try and track the in-plane strain in the SEI and silicon electrode for this purpose. Moiré can detect on the order of 10 nm changes in displacement and is therefore a useful tool in the measurement of strain. As the sample undergoes small deformations, large changes in the moiré fringe allow for measurements of displacement below the diffraction limit of light. Figure 1a shows how the moiré fringe changes as the sample grating deforms. As the sample contracts or expands, the frequency of the moiré fringe changes, and this change is proportional to the strain in the sample.

More Details

MnSn2 and MnSn2–TiO2 nanostructured anode materials for lithium-ion batteries

Nanotechnology

Goriparti, Subrahmanyam; Mcgrath, Andrew J.; Rosenberg, Samantha G.; Siegal, Michael P.; Ivanov, Sergei A.; Harrison, Katharine L.

The high theoretical lithium storage capacity of Sn makes it an enticing anode material for Li-ion batteries (LIBs); however, its large volumetric expansion during Li–Sn alloying must be addressed. Combining Sn with metals that are electrochemically inactive to lithium leads to intermetallics that can alleviate volumetric expansion issues and still enable high capacity. Here, we present the cycling behavior of a nanostructured MnSn2 intermetallic used in LIBs. Nanostructured MnSn2 is synthesized by reducing Sn and Mn salts using a hot injection method. The resulting MnSn2 is characterized by x-ray diffraction and transmission electron microscopy and then is investigated as an anode for LIBs. The MnSn2 electrode delivers a stable capacity of 514 mAh g-1 after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. Unlike other Sn-intermetallic anodes, an activation overpotential peak near 0.9 V versus Li is present from the second lithiation and in subsequent cycles. We hypothesize that this effect is likely due to electrolyte reactions with segregated Mn from MnSn2. To prevent these undesirable Mn reactions with the electrolyte, a 5 nm TiO2 protection layer is applied onto the MnSn2 electrode surface via atomic layer deposition. The TiO2-coated MnSn2 electrodes do not exhibit the activation overpotential peak. The protection layer also increases the capacity to 612 mAh g-1 after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. This higher capacity is achieved by suppressing the parasitic reaction of Mn with the electrolyte, as is supported by x-ray photoelectron spectroscopy analysis.

More Details

Cryogenic Laser Ablation Reveals Short-Circuit Mechanism in Lithium Metal Batteries

ACS Energy Letters

Jungjohann, Katherine L.; Gannon, Renae N.; Goriparti, Subrahmanyam; Randolph, Steven J.; Merrill, Laura C.; Johnson, David C.; Zavadil, Kevin R.; Harris, Stephen J.; Harrison, Katharine L.

The dramatic 50% improvement in energy density that Li-metal anodes offer in comparison to graphite anodes in conventional lithium (Li)-ion batteries cannot be realized with current cell designs because of cell failure after a few cycles. Often, failure is caused by Li dendrites that grow through the separator, leading to short circuits. Here, we used a new characterization technique, cryogenic femtosecond laser cross sectioning and subsequent scanning electron microscopy, to observe the electroplated Li-metal morphology and the accompanying solid electrolyte interphase (SEI) into and through the intact coin cell battery's separator, gradually opening pathways for soft-short circuits that cause failure. We found that separator penetration by the SEI guided the growth of Li dendrites through the cell. A short-circuit mechanism via SEI growth at high current density within the separator is provided. These results will inform future efforts for separator and electrolyte design for Li-metal anodes.

More Details
Results 1–50 of 91
Results 1–50 of 91