Publications

8 Results

Search results

Jump to search filters

NMR spectroscopy of coin cell batteries with metal casings

Science Advances

Walder, Brennan W.; Conradi, Mark S.; Borchardt, John J.; Merrill, Laura C.; Sorte, Eric G.; Deichmann, Eric J.; Anderson, Travis M.; Alam, Todd M.; Harrison, Katharine L.

Battery cells with metal casings are commonly considered incompatible with nuclear magnetic resonance (NMR) spectroscopy because the oscillating radio-frequency magnetic fields ("rf fields") responsible for excitation and detection of NMR active nuclei do not penetrate metals. Here, we show that rf fields can still efficiently penetrate nonmetallic layers of coin cells with metal casings provided "B1 damming"configurations are avoided. With this understanding, we demonstrate noninvasive high-field in situ 7Li and 19F NMR of coin cells with metal casings using a traditional external NMR coil. This includes the first NMR measurements of an unmodified commercial off-the-shelf rechargeable battery in operando, from which we detect, resolve, and separate 7Li NMR signals from elemental Li, anodic β-LiAl, and cathodic LixMnO2 compounds. Real-time changes of β-LiAl lithium diffusion rates and variable β-LiAl 7Li NMR Knight shifts are observed and tied to electrochemically driven changes of the β-LiAl defect structure.

More Details

Investigating the Effects of Lithium Deposition on the Abuse Response of Lithium-Ion Batteries

Journal of the Electrochemical Society

Deichmann, Eric J.; Torres-Castro, Loraine T.; Lamb, Joshua H.; Karulkar, Mohan P.; Ivanov, Sergei; Grosso, Christopher G.; Gray, Lucas S.; Langendorf, Jill L.; Garzon, Fernando

Li deposition at the graphitic anode is widely reported in literature as one of the leading causes of capacity fade in lithium-ion batteries (LIBs). Previous literature has linked Li deposition resulting from low-temperature ageing to diminished safety characteristics, however no current research has probed the effects of Li deposition on the abuse response of well-characterized cells. Using overtemperature testing, a relationship between increased concentrations of Li deposition and exacerbated abuse response in 1 Ah pouch cells has been established. A novel Li deposition technique is also investigated, where cells with n:p < 1 (anode-limiting) have been cycled at a high rate to exploit Li+ diffusion limitations at the anode. Scanning Electron Microscopy of harvested anodes indicates substantial Li deposition in low n:p cells after 20 cycles, with intricate networks of Li(s) deposits which hinder Li+ intercalation/deintercalation. Peak broadening and decreased amplitude of differential capacity plots further validates a loss of lithium inventory to Li+ dissolution, and Powder X-ray Diffraction indicates Li+ intercalation with staging in anode interstitial sites as the extent of Li deposition increases. A cradle-to-grave approach is leveraged on cell fabrication and testing to eliminate uncertainty involving the effects of cell additives on Li deposition and other degradation mechanisms.

More Details
8 Results
8 Results