Publications

Results 51–100 of 261

Search results

Jump to search filters

Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS)

Additive Manufacturing

Kustas, Andrew K.; Susan, D.F.; Johnson, Kyle J.; Whetten, Shaun R.; Rodriguez, Mark A.; Dagel, Daryl D.; Michael, Joseph R.; Keicher, David M.; Argibay, Nicolas A.

Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification, which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. Magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys. Hiperco® is a registered trademark of Carpenter Technologies, Readings, PA.

More Details

Linking microstructural evolution and macro-scale friction behavior in metals

Journal of Materials Science

Argibay, Nicolas A.; Chandross, M.; Cheng, S.; Michael, Joseph R.

A correlation is established between the macro-scale friction regimes of metals and a transition between two dominant atomistic mechanisms of deformation. Metals tend to exhibit bi-stable friction behavior—low and converging or high and diverging. These general trends in behavior are shown to be largely explained using a simplified model based on grain size evolution, as a function of contact stress and temperature, and are demonstrated for self-mated pure copper and gold sliding contacts. Specifically, the low-friction regime (where µ < 0.5) is linked to the formation of ultra-nanocrystalline surface films (10–20 nm), driving toward shear accommodation by grain boundary sliding. Above a critical combination of stress and temperature—demonstrated to be a material property—shear accommodation transitions to dislocation dominated plasticity and high friction, with µ > 0.5. We utilize a combination of experimental and computational methods to develop and validate the proposed structure–property relationship. This quantitative framework provides a shift from phenomenological to mechanistic and predictive fundamental understanding of friction for crystalline materials, including engineering alloys.

More Details

Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy

Journal of Materials Science

Ihlefeld, Jon I.; Michael, Joseph R.; McKenzie, Bonnie B.; Scrymgeour, David S.; Paisley, Elizabeth A.; Kitahara, Andrew R.; Maria, Jon P.

Ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yield can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm. Combined with electron backscatter diffraction to identify grain orientations, this technique provides information on domain orientation and domain wall type that cannot be readily measured using conventional non-destructive methods. In addition to grain orientation identification, this technique enables dynamic domain structure changes to be observed in functioning capacitors utilizing electrodes that are transparent to the high-energy backscattered electrons. This non-destructive, high-resolution domain imaging technique is applicable to a wide variety of ferroelectric thin films and a multitude of material systems where nanometer-scale crystallographic twin characterization is required.

More Details

Development of Scanning Ultrafast Electron Microscope Capability

Michael, Joseph R.; Celio, Kimberlee C.; Talin, A.A.; Chandler, D.W.

Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

More Details

Novel Applications of the Multi-Beam SEM [Abstract Only]

Nakakura, Craig Y.; Michael, Joseph R.; Dyck, Meredith L.; Sniegowski, Jeffry J.

The Zeiss Multi-Beam Scanning Electron Microscope (MultiSEM) was used to image a wide array samples using non-standard operating conditions. The ability of this new, high-throughput imaging technique to produce high-quality images was assessed during this one year LDRD. In addition to exploring new imaging conditions, sample preparation techniques, coupled with theoretical simulations, were explored to optimize the MultiSEM images. To obtain details about the devices imaged, as well as the experimental details, please refer to the classified report from the project manager, Bradley Gabel, or the Cyber IA lead, Justin Ford.

More Details

Microscopy & microanalysis 2016 in Columbus, Ohio

Microscopy Today

Michael, Joseph R.

The article provides information about an upcoming conference from the program chair. The Microscopy Society of America (MSA), the Microanalysis Society (MAS), and the International Metallographic Society (IMS) invite participation in Microscopy & Microanalysis 2016 in Columbus, Ohio, July 24 through July 28, 2016.

More Details

General predictive model of friction behavior regimes for metal contacts based on the formation stability and evolution of nanocrystalline surface films

Science

Argibay, Nicolas A.; Cheng, Shengfeng; Sawyer, W.G.; Michael, Joseph R.; Chandross, M.

The prediction of macro-scale friction and wear behavior based on first principles and material properties has remained an elusive but highly desirable target for tribologists and material scientists alike. Stochastic processes (e.g. wear), statistically described parameters (e.g. surface topography) and their evolution tend to defeat attempts to establish practical general correlations between fundamental nanoscale processes and macro-scale behaviors. We present a model based on microstructural stability and evolution for the prediction of metal friction regimes, founded on recently established microstructural deformation mechanisms of nanocrystalline metals, that relies exclusively on material properties and contact stress models. We show through complementary experimental and simulation results that this model overcomes longstanding practical challenges and successfully makes accurate and consistent predictions of friction transitions for a wide range of contact conditions. This framework not only challenges the assumptions of conventional causal relationships between hardness and friction, and between friction and wear, but also suggests a pathway for the design of higher performance metal alloys.

More Details

Elevated temperature tribology of cobalt and tantalum-based alloys

Wear

Scharf, Thomas W.; Prasad, Somuri V.; Kotula, Paul G.; Michael, Joseph R.; Robino, Charles V.

This paper describes the friction and wear behavior of a Co–Cr alloy sliding on a Ta–W alloy. Measurements were performed in a pin-on-flat configuration with a hemispherically tipped Co-base alloy pin sliding on a Ta–W alloy flat from ambient to 430 °C. Focused ion beam-scanning electron microscopy (FIB-SEM) and cross-sectional transmission electron microscopy (TEM) were used to identify the friction-induced changes to the chemistry and crystal structure in the subsurface regions of wear tracks. During sliding contact, transfer of material varied as a function of the test temperature, either from pin-to-flat, flat-to-pin, or both, resulting in either wear loss and/or volume gain. Friction coefficients (μ) and wear rates also varied as a function of test temperature. The lowest friction coefficient (μ=0.25) and wear rate (1×10−4 mm3/N m) were observed at 430 °C in argon atmosphere. This was attributed to the formation of a Co-base metal oxide layer (glaze), predominantly (Co, Cr)O with Rocksalt crystal structure, on the pin surface. Part of this oxide film transferred to the wear track on Ta–W, providing a self-mated oxide-on-oxide contact. Once the oxide glaze is formed, it is able to provide friction reduction for the entire temperature range of this study, ambient to 430 °C. The results of this study indicate that glazing the surfaces of Haynes alloys with continuous layers of cobalt chrome oxide prior to wear could protect the cladded surfaces from damage.

More Details
Results 51–100 of 261
Results 51–100 of 261