MODELING ANISOTROPIC EFFECTS OF CARBON FIBER REINFORCED EPOXY COMPOSITES IN FIRE ENVIRONMENTS
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
54th AIAA Aerospace Sciences Meeting
We present a detailed set of measurements from a piloted, sooting, turbulent C2H4-fueled jet flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. A new dual-detection channel CARS instrument provides the enhanced dynamic range required in this highly intermittent and turbulent environment. LII measurements are made across a wide field of view requiring us to account for spatial variation in the soot-volume-fraction response of the instrument. Single-laser-shot results are used to illustrate the mean and rms statistics, as well as probability densities of all three measured quantities. LII data from the soot-growth region of the jet are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature, oxygen and soot fluctuations within the soot oxidation region higher in the flame.
Bioresource Technology
The suitability of crude and purified struvite (MgNH4PO4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media were found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20±4gAFDW/m2/day). Analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.
The objective of this work is to investigate the efficacy of using calibration strategies from Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods are for engineering LES, uncertainty from numerical aspects of the model must also be quantified. 15 The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such that the cost could be minimized given an accuracy prescribed by an engineering need. Realization of this goal would enable LES to serve as a predictive simulation tool within the engineering design process.
We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.
Abstract not provided.
Bioresource Technology
Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Biotechnology and Bioengineering
In this study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500mgg-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. Evaluation of the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. The model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified. Biotechnol.