Publications

Results 1–25 of 51

Search results

Jump to search filters

Structural and Spectroscopic Properties of Butanediol-Modified Boehmite Materials

Journal of Physical Chemistry C

Greathouse, Jeffery A.; Weck, Philippe F.; Bell, Nelson S.; Kruichak, Jessica N.; Matteo, Edward N.

Glycoboehmite (GB) materials are synthesized by a solvothermal reaction to form layered aluminum oxyhydroxide (boehmite) modified by intercalated butanediol molecules. These hybrid materials offer a platform to design materials with potentially novel sorption, wetting, and catalytic properties. Several synthetic methods have been used, resulting in different structural and spectroscopic properties, but atomistic detail is needed to determine the interlayer structure to explore the synthetic control of GB materials. Here, we use classical molecular dynamics (MD) simulations to compare the structural properties of GB interlayers containing chemisorbed butanediol molecules as a function of diol loading. Accompanying quantum (density functional theory, DFT) static calculations and MD simulations are used to validate the classical model and compute the infrared spectra of various models. Classical MD results reveal the existence of two unique interlayer environments at higher butanediol loading, corresponding to smaller (cross-linked) and expanded interlayers. DFT-computed infrared spectra reveal the sensitivity of the aluminol O-H stretch frequencies to the interlayer environment, consistent with the spectrum of the synthesized material. Insight from these simulations will aid in the characterization of the newly synthesized GB materials.

More Details

Study of alkaline carbonate cooling to mitigate Ex-Vessel molten corium accidents

Nuclear Engineering and Design

Laros, James H.; Wang, Yifeng; Rao, Rekha R.; Kucala, Alec K.; Kruichak, Jessica N.

To mitigate adverse effects from molten corium following a reactor pressure vessel failure (RPVF), some new reactor designs employ a core catcher and a sacrificial material (SM), such as ceramic or concrete, to stabilize the molten corium and avoid containment breach. Existing reactors cannot easily be modified to include these SMs but could be modified to allow injectable cooling materials. Current reactor designs are limited to using water to stabilize the corium, but this can create other issues such as reaction of water with the concrete forming hydrogen gas. The novel SM proposed here is a granular carbonate mineral that can be used in existing light water reactor plants. The granular carbonate will decompose when exposed to heat, inducing an endothermic reaction to quickly solidify the corium in place and producing a mineral oxide and carbon dioxide. Corium spreading is a complex process strongly influenced by coupled chemical reactions, including decay heat from the corium, phase change, and reactions between the concrete containment and available water. A recently completed Sandia National Laboratories laboratory directed research and development (LDRD) project focused on two research areas: experiments to demonstrate the feasibility of the novel SM concept, and modeling activities to determine the potential applications of the concept to actual nuclear plants. Small-scale experiments using lead oxide (PbO) as a surrogate for molten corium demonstrate that the reaction of the SM with molten PbO results in a fast solidification of the melt due to the endothermic carbonate decomposition reaction and the formation of open pore structures in the solidified PbO from CO2 released during the decomposition. A simplified carbonate decomposition model was developed to predict thermal decomposition of carbonate mineral in contact with corium. This model was incorporated into MELCOR, a severe accident nuclear reactor code. A full-plant MELCOR simulation suggests that by the introduction of SM to the reactor cavity prior to RPVF ex-vessel accident progression, e.g., core-concrete interaction and core spreading on the containment floor, could be delayed by at least 15 h; this may be enough for additional accident management to be implemented to alleviate the situation.

More Details

Polymer intercalation synthesis of glycoboehmite nanosheets

Applied Clay Science

Bell, Nelson S.; Rodriguez, Mark A.; Kotula, Paul G.; Kruichak, Jessica N.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Kolesnichenko, Igor K.; Matteo, Edward N.

Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Bell, Nelson S.; Laros, James H.; Kotula, Paul G.; Kruichak, Jessica N.; Sanchez-Hernandez, Bernadette A.; Casilas, M.R.; Kolesnichenko, Igor K.; Caporuscio, F.; Sauer, K.B.; Rock, M.; Zheng, L.; Borglin, S.; Lammers, L.; Whittaker, M.; Zarzycki, P.; Fox, P.; Chang, C.; Subramanian, N.; Nico, P.; Tournassat, C.; Chou, C.; Xu, H.; Singer, E.; Steefel, C.; Peruzzo, L.; Wu, Y.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny; Guglielmi, Yves; Sasaki, Tsubasa; Deng, Hang; Li, Pei; Steefel, Carl I.; Tournassat, Christophe; Xu, Hao; Babhulgaonkar, Shaswat; Birkholzer, Jens; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Wainwright, Haruko

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Bentonite Barrier Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kruichak, Jessica N.; Mills, Melissa M.; Sanchez, Amanda C.; Hadgu, Teklu H.

This interim report is an update of the report Jove Colon et al. (2019; M4SF-19SN010301091) describing international collaboration activities pertaining to FEBEX-DP and DECOVALEX19 Task C projects. Although work on these two international repository science activities is no longer continuing by the international partners, investigations on the collected data and samples is still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are given in Jové Colón et al. (2018; 2019) but will repeated here for completeness. The 2019 status of work conducted at Sandia National Laboratories (SNL) on these two activities is summarized along with other international collaboration activities in Birkholzer et al. (2019).

More Details

A New Method to Contain Molten Corium in Catastrophic Nuclear Reactor Accidents

Laros, James H.; Wang, Yifeng; Rao, Rekha R.; Kucala, Alec K.; Ross, Kyle R.; Kruichak, Jessica N.; Chavez, William R.

The catastrophic nuclear reactor accident at Fukushima damaged public confidence in nuclear energy and a demand for new engineered safety features that could mitigate or prevent radiation releases to the environment in the future. We have developed a novel use of sacrificial material (SM) to prevent the molten corium from breaching containment during accidents as well as a validated, novel, high-fidelity modeling capability to design and optimize the proposed concept. Some new reactor designs employ a core catcher and a SM, such as ceramic or concrete, to slow the molten corium and avoid the breach of the containment. However, existing reactors cannot easily be modified to include these SMs but could be modified to allow injectable cooling materials (current designs are limited to water). The SM proposed in this Laboratory Development Research and Development (LDRD) project is based on granular carbonate minerals that can be used in existing light water reactor plants. This new SM will induce an endothermic reaction to quickly freeze the corium in place, with minimal hydrogen explosion and maximum radionuclide retention. Because corium spreading is a complex process strongly influenced by coupled chemical reactions (with underlying containment material and especially with the proposed SM), decay heat and phase change. No existing tool is available for modeling such a complex process. This LDRD project focused on two research areas: experiments to demonstrate the feasibility of the novel SM concept, and modeling activities to determine the potential applications of the concept to actual nuclear plants. We have demonstrated small-scale to large-scaled experiments using lead oxide (Pb0) as surrogate for molten corium, which showed that the reaction of the SM with molten Pb0 results in a fast solidification of the melt and the formation of open pore structures in the solidified Pb0 because of CO2 released from the carbonate decomposition.

More Details

Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements

Scientific Reports

Weck, Philippe F.; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N.; Mills, Melissa M.; Matteo, Edward N.; Coasne, Benoit; Bousige, Colin; Pellenq, Roland J.M.

Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

More Details
Results 1–25 of 51
Results 1–25 of 51