Publications

Results 76–100 of 194

Search results

Jump to search filters

Deriving specifications for coupling through dual-wound generators

Proceedings of the International Ship Control Systems Symposium

Rashkin, Lee; Neely, Jason C.; Wilson, David G.; Glover, Steven F.; Doerry, N.; Mccoy, T.J.

Many candidate power system architectures are being evaluated for the Navy’s next generation all-electric warship. One proposed power system concept involves the use of dual-wound generators to power both the Port and Starboard side buses using different 3-phase sets from the same machine (Doerry, 2015). This offers the benefit of improved efficiency through reduced engine light-loading and improved dispatch flexibility, but the approach couples the two busses through a common generator, making one bus vulnerable to faults and other dynamic events on the other bus. Thus, understanding the dynamics of cross-bus coupling is imperative to the successful implementation of a dual-wound generator system. In (Rashkin, 2017), a kilowatt-scale system was analysed that considered the use of a dual-wound permanent magnet machine, two passive rectifiers, and two DC buses with resistive loads. For this system, dc voltage variation on one bus was evaluated in the time domain as a function of load changes on the other bus. Therein, substantive cross-bus coupling was demonstrated in simulation and hardware experiments. The voltage disturbances were attributed to electromechanical (i.e. speed disturbances) as well as electromagnetic coupling mechanisms. In this work, a 25 MVA dual-wound generator was considered, and active rectifier models were implemented in Matlab both using average value modelling and switching (space vector modulation) simulation models. The frequency dynamics of the system between the load on one side and the dc voltage on the other side was studied. The coupling is depicted in the frequency domain as a transfer function with amplitude and phase and is shown to have distinct characteristics (i.e. frequency regimes) associated with physical coupling mechanisms such as electromechanical and electromagnetic coupling as well as response characteristics associated with control action by the active rectifiers. In addition, based on requirements outlined in draft Military Standard 1399-MVDC, an approach to derive specifications will be discussed and presented. This method will aid in quantifying the allowable coupling of energy from one bus to another in various frequency regimes as a function of other power system parameters. Finally, design and control strategies will be discussed to mitigate cross-bus coupling. The findings of this work will inform the design, control, and operation of future naval warship power systems.

More Details

Ultrafast reverse recovery time measurement for wide-bandgap diodes

IEEE Transactions on Power Electronics

Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.; King, Michael P.; Neely, Jason C.; Kizilyalli, Isik C.; Kaplar, Robert K.

A system is presented that is capable of measuring subnanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 - 1 A) and reverse voltages (0 - 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultrashort Pulse Laser, a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS-based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode, which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. This system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50-100 V and forward current of 1-100 mA.

More Details

Advanced Thermal Management for High Power Density Electronics

Miljkovic, Nenad; Pilawa-Podgurski, Robert; Foulkes, Thomas; Oh, Junho; Birbarah, Patrick; Neely, Jason C.

Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effects of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

More Details
Results 76–100 of 194
Results 76–100 of 194