Initial ClosedLoop Testing Results for the Pacific DC Intertie Wide Area Damping Controller
Abstract not provided.
Abstract not provided.
This report presents a complete listing, as of May 2019, of the damping controller (DCON) project accomplishments including a project overview, project innovations, awards, patent application, journal papers, conference papers, project reports, and project presentations. The purpose of the DCON is to mitigate inter-area oscillations in the WI by active improvement of oscillatory mode damping using phasor measurement unit (PMU) feedback to modulate power flow in the PDCI. The DCON project is the result of a collaboration between Sandia National Laboratories (SNL), Montana Technological University (MTU), Bonneville Power Administration (BPA), and the Department of Energy Office of Electricity (DOE-OE).
Abstract not provided.
Abstract not provided.
This project is part of a multi-lab consortium that leverages U.S. research expertise and facilities at national labs and universities to significantly advance electric drive power density and reliability, while simultaneously reducing cost. The final objective of the consortium is to develop a 100 kW traction drive system that achieves 33 kW/L, has an operational life of 300,000 miles, and a cost of less than $\$6$/kW. One element of the system is a 100 kW inverter with a power density of 100 kW/L and a cost of $\$2.7$/kW. New materials such as widebandgap semiconductors, soft magnetic materials, and ceramic dielectrics, integrated using multi-objective cooptimization design techniques, will be utilized to achieve these program goals. This project focuses on a subset of the power electronics work within the consortium, specifically the design, fabrication, and evaluation of vertical GaN power devices suitable for automotive applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Power and Energy Society General Meeting
Lightly damped electromechanical oscillations are a source of concern in the western interconnect. Recent development of a reliable real-time wide-area measurement system (WaMS) has enabled the potential for large-scale damping control approaches for stabilizing critical oscillation modes. a recent research project has focused on the development of a prototype feedback modulation controller for the Pacific DC Intertie (PDCI) aimed at stabilizing such modes. The damping controller utilizes real-time WaMS signals to form a modulation command for the DC power on the PDCI. This paper summarizes results from the first actual-system closed-loop tests. Results demonstrate desirable performance and improved modal damping consistent with previous model studies.
IEEE Power and Energy Society General Meeting
This paper presents simulation results of a control scheme for damping inter-area oscillations using high-voltage DC (HVDC) power modulation. The control system utilizes realtime synchrophasor feedback to construct a supplemental commanded power signal for the Pacific DC Intertie (PDCI) in the North American Western Interconnection (WI). A prototype of this controller has been implemented in hardware and, after multiple years of development, successfully tested in both open and closed-loop operation. This paper presents simulation results of the WI during multiple severe contingencies with the damping controller in both open and closed-loop. The primary results are that the controller adds significant damping to the controllable modes of the WI and that it does not adversely affect the system response in any of the simulated cases. Furthermore, the simulations show that a feedback signal composed of the frequency difference between points of measurement near the Washington-Oregon border and the California-Oregon border can be employed with similar results to a feedback signal constructed from measurements taken near the Washington-Oregon border and southern California. This is an important consideration because it allowed the control system to be designed without relying upon cross-system measurements, which would have introduced significant additional delay.
IEEE Power and Energy Society General Meeting
Distributed control compensation based on local and remote sensor feedback can improve small-signal stability in large distributed systems, such as electric power systems. Long distance remote measurements, however, are potentially subject to relatively long and uncertain network latencies. In this work, the issue of asymmetrical network latencies is considered for an active damping application in a two-area electric power system. The combined effects of latency and gain are evaluated in time domain simulation and in analysis using root-locus and the maximum singular value of the input sensitivity function. The results aid in quantifying the effects of network latencies and gain on system stability and disturbance rejection.
IEEE Power and Energy Society General Meeting
Distributed control compensation based on local and remote sensor feedback can improve small-signal stability in large distributed systems, such as electric power systems. Long distance remote measurements, however, are potentially subject to relatively long and uncertain network latencies. In this work, the issue of asymmetrical network latencies is considered for an active damping application in a two-area electric power system. The combined effects of latency and gain are evaluated in time domain simulation and in analysis using root-locus and the maximum singular value of the input sensitivity function. The results aid in quantifying the effects of network latencies and gain on system stability and disturbance rejection.
Abstract not provided.