Stability of High-Bandwidth Power Electronic Systems with Transmission Lines
Abstract not provided.
Abstract not provided.
IEEE Power & Energy Society General Meeting (Online)
Abstract not provided.
Abstract not provided.
To demonstrate and validate the performance of the wide-area damping control system, the project plans to conduct closed-loop tests on the PDCI in spring/summer 2017. A test plan details the open and closed loop tests to be conducted on the PDCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the results from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases and the 2014 dual export base case. Because of the large volume of plots, the results were divided into three reports corresponding to the three base cases. This report contains results from the 2016 light summer base case.
To demonstrate and validate the performance of the wide-area damping control system, the project plans to conduct closed-loop tests on the PDCI in spring/summer 2017. A test plan details the open and closed loop tests to be conducted on the PDCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the results from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases and the 2014 dual export base case. Because of the large volume of plots, the results were divided into three reports corresponding to the three base cases. This report contains results from the 2016 heavy summer base case.
To demonstrate and validate the performance of the wide-area damping control system, the project plans to conduct closed-loop tests on the PDCI in spring/summer 2017. A test plan details the open and closed loop tests to be conducted on the PDCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the results from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases and the 2014 dual export base case. Because of the large volume of plots, the results were divided into three reports corresponding to the three base cases. This report contains results from the 2014 dual export base case.
Abstract not provided.
Abstract not provided.
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.
Abstract not provided.
2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
The goal of this effort was to assess the effect of high penetration solar deployment on the small signal stability of the western North American power system (wNAPS). Small signal stability is concerned with the system response to small disturbances, where the system is operating in a linear region. The study area consisted of the region governed by the Western Electricity Coordinating Council (WECC). General Electric's Positive Sequence Load Flow software (PSLF®) was employed to simulate the power system. A resistive brake insertion was employed to stimulate the system. The data was then analyzed in MATLAB1® using subspace methods (Eigensystem Realization Algorithm). Two different WECC base cases were analyzed: 2022 light spring and 2016 heavy summer. Each base case was also modified to increase the percentage of wind and solar. In order to keep power flows the same, the modified cases replaced conventional generation with renewable generation. The replacements were performed on a regional basis so that solar and wind were placed in suitable locations. The main finding was that increased renewable penetration increases the frequency of inter-area modes, with minimal impact on damping. The slight increase in mode frequency was consistent with the loss of inertia as conventional generation is replaced with wind and solar. Then, distributed control of renewable generation was assessed as a potential mitigation, along with an analysis of the impact of communications latency on the distributed control algorithms.
WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications
The effects of paralleling low-current vertical Gallium Nitride (v-GaN) diodes in a custom power module are reported. Four paralleled v-GaN diodes were demonstrated to operate in a buck converter at 1.3 Apeak (792 mArms) at 240 V and 15 kHz switching frequency. Additionally, high-fidelity SPICE simulations demonstrate the effects of device parameter variation on power sharing in a power module. The device parameters studied were found to have a sub-linear relationship with power sharing, indicating a relaxed need to bin parts for paralleling. This result is very encouraging for power electronics based on low-current v-GaN and demonstrates its potential for use in high-power systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Power & Energy Society General Meeting (Online)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.