Publications

Results 1226–1250 of 2,290

Search results

Jump to search filters

Laboratory Directed Research and Development (LDRD) 2018 Annual Report

Laros, James H.

Sandia executes its broad national security missions through five major mission portfolios: Advanced Science & Technology, Nuclear Deterrence, Global Security, National Security Programs, and Energy & Homeland Security. The LDRD program is key to developing capabilities to address our national security mission challenges. LDRD Mission Foundations, aligned to the Program Portfolios, conduct applied research in areas directly relevant to current/anticipated missions to develop and demonstrate new capabilities and prototype new solutions.

More Details

Test Plan for the Horizontal Dry Cask Simulator

Durbin, S.G.; Lindgren, Eric R.; Pulido, Ramon P.; Laros, James H.

The thermal performance of commercial spent nuclear fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission(NRC). Canistered dry storage cask systems rely on ventilation between the inner canister and the overpack to convect heat away from the canister to the surrounding environment for both horizontal and vertical configurations. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. While several testing programs have been previously conducted, these earlier validation studies did not integrate all the physics or components important in a modern, horizontal dry cask system. The purpose of the investigation described in this test plan is to produce data sets that can be used to benchmark the codes and best practices presently used to determine cladding temperatures and induced cooling air flows in modern horizontal dry storage systems. The horizontal dry cask simulator(HDCS) has been designed to generate this benchmark data and add to the existing knowledgebase. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure(MAWP)rating of 2,400 kPa at400 °C. An existing electrically heated but otherwise prototypic boiling water reactor(BWR), Incoloy-clad test assembly will be deployed inside of a representative storage basket and canister. An insulated sheet metal enclosure will be used to mimic the thermal properties of the concrete vault enclosure used in a modern horizontal storage system. Radial and axial temperature profiles along with induced cooling air flow will be measured for a wide range of decay powers and representative(and higher)cask pressures using various backfills of helium, argon, or air. The single assembly geometry with well-controlled boundary conditions simplifies computational requirements while preserving relevant physics. The proposed test apparatus integrates all the underlying thermal-hydraulics important to defining the performance of a modern horizontal storage system. These include combined-mode heat transfer from the electrically-heated assembly to the canister walls and the primarily natural-convective heat transfer from the canister to the cooling air flow passing through the horizontal vault enclosure. The objective of the HDCS is not to reproduce the performance of a commercial dry storage system for any given set of operational parameters. Rather ,the objective is to capture the dominant physics in a well-characterized test apparatus. The close coupling between the thermal response of the canister system and the resulting induced cooling air flow rate is of particular importance. While incorporating the best available information based on thermal-hydraulic scaling arguments as well as previous vertical testing, this test plan is subject to changes due to improved understanding or from as built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.

More Details

Impact of Hydration and Sulfonation on the Morphology and Ionic Conductivity of Sulfonated Poly(phenylene) Proton Exchange Membranes

Macromolecules

Sorte, Eric G.; Paren, Benjamin A.; Rodriguez, Christina G.; Fujimoto, Cy F.; Laros, James H.; Abbott, Lauren J.; Lynd, Nathaniel A.; Winey, Karen I.; Frischknecht, Amalie F.; Alam, Todd M.

Multiple computational and experimental techniques are used to understand the nanoscale morphology and water/proton transport properties in a series of sulfonated Diels-Alder poly(phenylene) (SDAPP) membranes over a wide range of temperature, hydration, and sulfonation conditions. New synthetic methods allow us to sulfonate the SDAPP membranes to much higher ion exchange capacity levels than has been previously possible. Nanoscale phase separation between the hydrophobic polymer backbone and the hydrophilic water/sulfonic acid groups was observed for all membranes studied. We find good agreement between structure factors calculated from atomistic molecular dynamics (MD) simulations and those measured by X-ray scattering. With increasing hydration, the scattering ionomer peak in SDAPP is found to decrease in intensity. This intensity decrease is shown to be due to a reduction of scattering contrast between the water and polymer and is not indicative of any loss of nanoscale phase separation. Both MD simulations and density functional theory (DFT) calculations show that as hydration levels are increased, the nanostructure morphology in SDAPP evolves from isolated ionic domains to fully percolated water networks containing progressively weaker hydrogen bond strengths. The conductivity of the membranes is measured by electrical impedance spectroscopy and the equivalent proton conductivity calculated from pulsed-field-gradient (PFG) NMR diffusometry measurements of the hydration waters. Comparison of the measured and calculated conductivity reveals that in SDAPP the proton conduction mechanism evolves from being dominated by vehicular transport at low hydration and sulfonation levels to including a significant contribution from the Grötthuss mechanism (also known as structural diffusion) at higher hydration and sulfonation levels. The observed increase in conductivity reflects the impact that changing hydration and sulfonation have on the morphology and hydrogen bond network and ultimately on the membrane performance.

More Details

Curvature Based Analysis to Identify and Categorize Trajectory Segments

Schrum Jr., Paul T.; Laros, James H.; Newton, Benjamin D.

Since the attacks carried out against the United States on September 11, 2001, which involved the commandeering of commercial aircraft, interest has increased in performing trajectory analysis of vehicle types not constrained by roadways or railways, i.e., aircraft and watercraft. Anomalous trajectories need to be automatically identified along with other trajectories of interest to flag them for further investigation. There is also interest in analyzing trajectories without a focus on anomaly detection. Various approaches to analyzing these trajectories have been undertaken with useful results to date. In this research, we seek to augment trajectory analysis by carrying out analysis of the trajectory curvature along with other parameters, including distance and total deflection (change in direction). At each point triplet in the ordered sequence of points, these parameters are computed. Adjacent point triplets with similar values are grouped together to form a higher level of semantic categorization. These categorizations are then analyzed to form a yet higher level of categorization which has more specific semantic meaning. This top level of categorization is then summarized for all trajectories under study, allowing for fast identification of trajectories with various semantic characteristics.

More Details

Open data, models, and codes for vanadium redox batch cell systems: A systems approach using zero-dimensional models

Journal of Electrochemical Energy Conversion and Storage

Lee, Seong B.; Mitra, Kishalay; Laros, James H.; Anderson, Travis M.; Ramadesigan, Venkatasailanathan; Chalamala, Babu C.

In this paper, we study, analyze, and validate some important zero-dimensional physics-based models for vanadium redox batch cell (VRBC) systems and formulate an adequate physics-based model that can predict the battery performance accurately. In the model formulation process, a systems approach to multiple parameters estimation has been conducted using VRBC systems at low C-rates (∼C/30). In this batch cell system, the effect of ions’ crossover through the membrane is dominant, and therefore, the capacity loss phenomena can be explicitly observed. Paradoxically, this means that using the batch system might be a better approach for identifying a more suitable model describing the effect of ions transport. Next, we propose an efficient systems approach, which enables to help understand the battery performance quickly by estimating all parameters of the battery system. Finally, open source codes, executable files, and experimental data are provided to enable people’s access to robust and accurate models and optimizers. In battery simulations, different models and optimizers describing the same systems produce different values of the estimated parameters. Providing an open access platform can accelerate the process to arrive at robust models and optimizers by continuous modification from the users’ side.

More Details

FY 18 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models and Inventory of Software used for Process Models

Hadgu, Teklu H.; Laros, James H.; Appel, Gordon J.; Garland, Jason P.

Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016), and Hadgu et al. (2017). The TSPA computing hardware (2014 server cluster -CL2014) and storage system described in Hadgu et al. (2015) were used for the current analysis. One floating license of Gold Sim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The FY18 task included developing an inventory of software used for the Yucca Mountain Project process models and preliminary assessment of status of the software; enhancing security of the cluster and setting a backup system. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.

More Details

Refinement of Statecharts with Run-to-Completion Semantics

Communications in Computer and Information Science

Laros, James H.; Snook, Colin; Hoang, Thai S.; Armstrong, Robert C.; Butler, Michael

Statechart modelling notations, with so-called ‘run to completion’ semantics and simulation tools for validation, are popular with engineers for designing systems. However, they do not support formal refinement and they lack formal static verification methods and tools. For example, properties concerning the synchronisation between different parts of a system may be difficult to verify for all scenarios, and impossible to verify at an abstract level before the full details of substates have been added. Event-B, on the other hand, is based on refinement from an initial abstraction and is designed to make formal verification by automatic theorem provers feasible, restricting instantiation and testing to a validation role. In this paper, we introduce a notion of refinement, similar to that of Event-B, into a ‘run to completion’ Statechart modelling notation, and leverage Event-B’s tool support for proof. We describe the pitfalls in translating ‘run to completion’ models into Event-B refinements and suggest a solution. We illustrate the approach using our prototype translation tools and show by example, how a synchronisation property between parallel Statecharts can be automatically proven at an intermediate refinement level.

More Details

The cross spectrum in multiple input multiple response vibration testing

Conference Proceedings of the Society for Experimental Mechanics Series

Laros, James H.; Cross, Kevin R.; Nelson, Garrett D.

Random vibration tests have been conducted for over 5 decades using vibration machines which excite a test item in uniaxial motion. With the advent of multi shaker test systems, excitation in multiple axes and/or at multiple locations is feasible. For random vibration testing, both the auto spectrum of the individual controls and the cross spectrum, which defines the relationship between the controls, define the test environment. This is a striking contrast to uniaxial testing where only the control auto spectrum is defined. In a vibration test the energy flow proceeds from drive excitation voltages to control acceleration auto and cross spectral densities and finally, to response auto and cross spectral densities. This paper examines these relationships, which are encoded in the frequency response function. Following the presentation of a complete system diagram, examination of the relationships between the excitation and control spectral density matrices is clarified. It is generally assumed that the control auto spectra are known from field measurements, but the control cross spectra may be unknown or uncertain. Given these constraints, control algorithms often prioritize replication of the field auto spectrum. The system dynamics determine the cross spectrum. The Nearly Independent Drive Algorithm, described herein, is one approach. A further issue in Multi Input Multi Response testing is the link between cross spectrum at one set of locations and auto spectra at a second set of locations. The effect of excitation cross spectra on control auto spectra is one important case, encountered in every test. The effect of control cross spectra on response auto spectra is important since we may desire to adjust control cross spectra to achieve some desired response auto spectra. The relationships between cross spectra at one set of locations and auto spectra at another set of locations is examined with the goal of elucidating the advantages and limitations of using control cross spectra to define response auto spectra.

More Details
Results 1226–1250 of 2,290
Results 1226–1250 of 2,290