Publications

Results 1–50 of 189

Search results

Jump to search filters

Low-Frequency Noise and Deep Level Transient Spectroscopy in n-p-n Si Bipolar Junction Transistors Irradiated with Si Ions

IEEE Transactions on Nuclear Science

Luo, Xuyi; Montes, Jossue; Koukourinkova, Sabina D.; Vaandrager, Bastiaan L.; Bielejec, Edward S.; Vizkelethy, Gyorgy; Schrimpf, Ronald D.; Fleetwood, Daniel M.; Zhang, En X.

The properties of defects in n-p-n Si bipolar junction transistors (BJTs) caused by 17-MeV Si ions are investigated via current-voltage, low-frequency (LF) noise, and deep level transient spectroscopy (DLTS) measurements. Four prominent radiation-induced defects in the base-collector junction of these transistors are identified via DLTS. At least two defect levels are observed in temperature-dependent LF 1/f noise measurements, one that is similar to a prominent defect in DLTS and another that is not. Defect microstructures are discussed. Our results show that DLTS and 1/f noise measurements can provide complementary information about defects in linear bipolar devices.

More Details

Effects of Proton Irradiation on GaN Vacuum Electron Nanodiodes

IEEE Transactions on Electron Devices

Sapkota, Keshab R.; Vizkelethy, Gyorgy; Burns, George R.; Wang, George T.

Gallium nitride (GaN)-based nanoscale vacuum electron devices, which offer advantages of both traditional vacuum tube operation and modern solid-state technology, are attractive for radiation-hard applications due to the inherent radiation hardness of vacuum electron devices and the high radiation tolerance of GaN. Here, we investigate the radiation hardness of top-down fabricated n-GaN nanoscale vacuum electron diodes (NVEDs) irradiated with 2.5-MeV protons (p) at various doses. We observe a slight decrease in forward current and a slight increase in reverse leakage current as a function of cumulative protons fluence due to a dopant compensation effect. The NVEDs overall show excellent radiation hardness with no major change in electrical characteristics up to a cumulative fluence of 5E14 p/cm2, which is significantly higher than the existing state-of-the-art radiation-hardened devices to our knowledge. The results show promise for a new class of GaN-based nanoscale vacuum electron devices for use in harsh radiation environments and space applications.

More Details

Transient Photocurrent From High-Voltage Vertical GaN Diodes Irradiated With Electrons: Experiments and Simulations

IEEE Transactions on Nuclear Science

Koukourinkova, Sabina D.; Colon, Albert; Doyle, B.L.; Vizkelethy, Gyorgy; Pickrell, Gregory W.; Gunning, Brendan P.; Kropka, Kimberly E.; Bielejec, Edward S.; Wampler, William R.

Radiation-hard high-voltage vertical GaN p-n diodes are being developed for use in power electronics subjected to ionizing radiation. We present a comparison of the measured and simulated photocurrent response of diodes exposed to ionizing irradiation with 70 keV and 20 MeV electrons at dose rates in the range of 1.4× 107 - 5.0× 108 rad(GaN)/s. The simulations correctly predict the trend in the measured steady-state photocurrent and agree with the experimental results within a factor of 2. Furthermore, simulations of the transient photocurrent response to dose rates with uniform and non-uniform ionization depth profiles uncover the physical processes involved that cannot be otherwise experimentally observed due to orders of magnitude larger RC time constant of the test circuit. The simulations were performed using an eXploratory Physics Development code developed at Sandia National Laboratories. The code offers the capability to include defect physics under more general conditions, not included in commercially available software packages, extending the applicability of the simulations to different types of radiation environments.

More Details

Carrier capture and emission by substitutional carbon impurities in GaN vertical diodes

Journal of Applied Physics

Wampler, William R.; Armstrong, Andrew A.; Vizkelethy, Gyorgy

A model was developed for the operation of a GaN pn junction vertical diode which includes rate equations for carrier capture and thermally activated emission by substitutional carbon impurities and carrier generation by ionizing radiation. The model was used to simulate the effect of ionizing radiation on the charge state of carbon. These simulations predict that with no applied bias, carbon is negatively charged in the n-doped layer, thereby compensating n-doping as experimentally observed in diodes grown by metal-organic chemical vapor deposition. With reverse bias, carbon remains negative in the depletion region, i.e., compensation persists in the absence of ionization but is neutralized by exposure to ionizing radiation. This increases charge density in the depletion region, decreases the depletion width, and increases the capacitance. The predicted increase in capacitance was experimentally observed using a pulsed 70 keV electron beam as the source of ionization. In additional confirming experiments, the carbon charge-state conversion was accomplished by photoionization using sub-bandgap light or by the capture of holes under forward bias.

More Details

Single Event Upset and Total Ionizing Dose Response of 12LP FinFET Digital Circuits

Spear, Matthew; Wallace, Trace; Wilson, Donald E.; Solano, Jose; Irumva, Gedeon; Esqueda, Ivan S.; Barnaby, Hugh J.; Clark, Lawrence; Brunhaver, John; Turowski, Marek; Mikkola, Esko; Hughart, David R.; Young, Joshua M.; Manuel, Jack; Agarwal, Sapan; Vaandrager, Bastiaan L.; Vizkelethy, Gyorgy; Gutierrez, Amos; Trippe, James; King, Michael P.; Bielejec, Edward S.; Marinella, Matthew

Abstract not provided.

Ultra-low Voltage GaN Vacuum Nanoelectronics

2022 Compound Semiconductor Week, CSW 2022

Wang, George T.; Sapkota, Keshab R.; Talin, Albert A.; Leonard, Francois; Gunning, Brendan P.; Vizkelethy, Gyorgy

The III-nitride semiconductors are attractive for on-chip, solid-state vacuum nanoelectronics, having high thermal and chemical stability, low electron affinity, and high breakdown fields. Here we report top-down fabricated, lateral gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with ultra-low turn-on voltages down to ~0.24 V, and stable high field emission currents, tested up to several microamps for single-emitter devices. We present gap-size and pressure dependent studies which provide insights into the design of future nanogap vacuum electron devices. The vacuum nanodiodes also show high resistance to damage from 2.5 MeV proton exposure. Preliminary results on the fabrication and characteristics of lateral GaN nano vacuum transistors will also be presented. The results show promise for a new class of robust, integrated, III-nitride based vacuum nanoelectronics.

More Details

Optical activation and detection of charge transport between individual colour centres in diamond

Nature Electronics

Lozovoi, Artur; Jayakumar, Harishankar; Vizkelethy, Gyorgy; Bielejec, Edward S.; Doherty, Marcus W.; Flick, Johannes; Meriles, Carlos A.

Understanding the capture of charge carriers by colour centres in semiconductors is important for the development of novel forms of sensing and quantum information processing, but experiments typically involve ensemble measurements, often impacted by defect proximity. Here we show that confocal fluorescence microscopy and magnetic resonance can be used to induce and probe charge transport between individual nitrogen-vacancy centres in diamond at room temperature. In our experiments, a ‘source’ nitrogen vacancy undergoes optically driven cycles of ionization and recombination to produce a stream of photogenerated carriers, one of which is subsequently captured by a ‘target’ nitrogen vacancy several micrometres away. We use a spin-to-charge conversion scheme to encode the spin state of the source colour centre into the charge state of the target, which allows us to set an upper bound to carrier injection from other background defects. We attribute our observations to the action of unscreened Coulomb potentials producing giant carrier capture cross-sections, orders of magnitude greater than those measured in ensembles.

More Details

Identification of localized radiation damage in power MOSFETs using EBIC imaging

Applied Physics Letters

Ashby, David S.; Garland, D.; Vizkelethy, Gyorgy; Marinella, Matthew; Mclain, Michael; Llinas, J.P.; Talin, Albert A.

The rapidly increasing use of electronics in high-radiation environments and the continued evolution in transistor architectures and materials demand improved methods to characterize the potential damaging effects of radiation on device performance. Here, electron-beam-induced current is used to map hot-carrier transport in model metal-oxide semiconductor field-effect transistors irradiated with a 300 KeV focused He+ beam as a localized line spanning across the gate and bulk Si. By correlating the damage to the electronic properties and combining these results with simulations, the contribution of spatially localized radiation damage on the device characteristics is obtained. This identified damage, caused by the He+ beam, is attributed to localized interfacial Pb centers and delocalized positive fixed-charges, as surmised from simulations. Comprehension of the long-term interaction and mobility of radiation-induced damage are key for future design of rad-hard devices.

More Details

Heavy-Ion-Induced Displacement Damage Effects in Magnetic Tunnel Junctions with Perpendicular Anisotropy

IEEE Transactions on Nuclear Science

Xiao, Tianyao P.; Bennett, Christopher; Mancoff, Frederick B.; Manuel, Jack; Hughart, David R.; Jacobs-Gedrim, Robin B.; Bielejec, Edward S.; Vizkelethy, Gyorgy; Sun, Jijun; Aggarwal, Sanjeev; Arghavani, Reza; Marinella, Matthew

We evaluate the resilience of CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy (PMA) to displacement damage induced by heavy-ion irradiation. MTJs were exposed to 3-MeV Ta2+ ions at different levels of ion beam fluence spanning five orders of magnitude. The devices remained insensitive to beam fluences up to $10^{11}$ ions/cm2, beyond which a gradual degradation in the device magnetoresistance, coercive magnetic field, and spin-transfer-torque (STT) switching voltage were observed, ending with a complete loss of magnetoresistance at very high levels of displacement damage (>0.035 displacements per atom). The loss of magnetoresistance is attributed to structural damage at the MgO interfaces, which allows electrons to scatter among the propagating modes within the tunnel barrier and reduces the net spin polarization. Ion-induced damage to the interface also reduces the PMA. This study clarifies the displacement damage thresholds that lead to significant irreversible changes in the characteristics of STT magnetic random access memory (STT-MRAM) and elucidates the physical mechanisms underlying the deterioration in device properties.

More Details

Impact of Surface Recombination on Single-Event Charge Collection in an SOI Technology

IEEE Transactions on Nuclear Science

Tonigan, Andrew M.; Ball, Dennis; Vizkelethy, Gyorgy; Black, Jeffrey D.; Black, Dolores A.; Trippe, James; Bielejec, Edward S.; Alles, Michael L.; Reed, Robert S.; Schrimpf, Ronald D.

Semiconductor-insulator interfaces play an important role in the reliability of integrated devices; however, the impact of these interfaces on the physical mechanisms related to single-event effects has not been previously reported. We present experimental data that demonstrate that single-event charge collection can be impacted by changes in interface quality. The experimental data, combined with simulations, show that single-event response may depend on surface recombination at interface defects. The effect depends on strike location and increases with increasing linear energy transfer (LET). Surface recombination can affect single-event charge collection for interfaces with a surface recombination velocity (SRV) of 1000 cm/s and is a dominant charge collection mechanism with SRV > 10^{5} cm/s.

More Details

Optimization of target lifetime for production of 14 MeV neutrons

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Wampler, William R.; Doyle, B.L.; Cooper-Snow, Wendy S.; Vizkelethy, Gyorgy; Jasica, M.J.

Two methods are examined for extending the life of tritium targets for production of 14 MeV neutrons by the 3H(2H,n)4He nuclear reaction. With thick film targets the neutron production rate decreases with time due to isotope exchange of tritium in the film with implanted deuterium. In this case, the target life is maximized by operating the target at elevated temperature where the implanted deuterium mixes by thermal diffusion throughout the entire thickness of the film. The number of neutrons obtained from a target is then proportional to the initial tritium content of the film. A novel thin-film target design was also developed and tested. With these thin-film targets, the incident deuterium is implanted through the tritide into the underlying substrate material. A thin permeation barrier layer between the tritide film and substrate, reduces the rate of tritium loss from the tritide film. Good thin-film target performance was achieved using W and Fe for the barrier and substrate materials respectively. Thin-film targets were fabricated and tested and shown to produce similar number of neutrons as thick-film targets while using only a small fraction of the amount of tritium.

More Details

Response of GaN-Based Semiconductor Devices to Ion and Gamma Irradiation

Aguirre, Brandon A.; King, Joseph; Manuel, Jack; Vizkelethy, Gyorgy; Bielejec, Edward S.; Griffin, Patrick J.

GaN has electronic properties that make it an excellent material for the next generation of power electronics; however, its radiation hardening still needs further understanding before it is used in radiation environments. In this work we explored the response of commercial InGaN LEDs to two different radiation environments: ion and gamma irradiations. For ion irradiations we performed two types of irradiations at the Ion Beam Lab (IBL) at Sandia National Laboratories (SNL): high energy and end of range (EOR) irradiations. For gamma irradiations we fielded devices at the gamma irradiation facility (GIF) at SNL. The response of the LEDs to radiation was investigated by IV, light output and light output vs frequency measurements. We found that dose levels up to 500 krads do not degrade the electrical properties of the devices and that devices exposed to ion irradiations exhibit a linear and non- linear dependence with fluence for two different ranges of fluence levels. We also performed current injection annealing studies to explore the annealing properties of InGaN LEDs.

More Details

Photocurrent from single collision 14-MeV neutrons in GaN and GaAs

IEEE Transactions on Nuclear Science

Jasica, M.J.; Wampler, William R.; Vizkelethy, Gyorgy; Hehr, Brian D.; Bielejec, Edward S.

Accurate predictions of device performance in 14-MeV neutron environments rely upon understanding the recoil cascades that may be produced. Recoils from 14-MeV neutrons impinging on both gallium nitride (GaN) and gallium arsenide (GaAs) devices were modeled and compared to the recoil spectra of devices exposed to 14-MeV neutrons. Recoil spectra were generated using nuclear reaction modeling programs and converted into an ionizing energy loss (IEL) spectrum. We measured the recoil IEL spectra by capturing the photocurrent pulses produced by single neutron interactions with the device. Good agreement, with a factor of two, was found between the model and the experiment under strongly depleted conditions. However, this range of agreement between the model and the experiment decreased significantly when the bias was removed, indicating partial energy deposition due to cascades that escape the active volume of the device not captured by the model. Consistent event rates across multiple detectors confirm the reliability of our neutron recoil detection method.

More Details

14 MeV DT Neutron Test Facility at the Sandia Ion Beam Laboratory

Wampler, William R.; Doyle, B.L.; Vizkelethy, Gyorgy; Bielejec, Edward S.; Snow, Clark S.; Styron, Jedediah D.; Jasica, M.J.

This report documents work done at the Sandia Ion Beam Laboratory to develop a capability to produce 14 Me neutrons at levels sufficient for testing radiation effects on electronic materials and components. The work was primarily enabled by a laboratory directed research and development (LDRD) project. The main elements of the work were to optimize target lifetime, test a new thin- film target design concept to reduce tritium usage, design and construct a new target chamber and beamline optimized for high-flux tests, and conduct tests of effects on electronic devices and components. These tasks were all successfully completed. The improvements in target performance and target chamber design have increased the flux and fluence of 14 MV neutrons available at the test location by several orders of magnitude. The outcome of the project is that a new capability for testing radiation-effects on electronic components from 14 MeV neutrons is now available at Sandia National Laboratories. This capability has already been extensively used for many qualification and component evaluation and development tests.

More Details
Results 1–50 of 189
Results 1–50 of 189