Publications

Results 1–25 of 148

Search results

Jump to search filters

Ab initio calculations of low-energy quasiparticle lifetimes in bilayer graphene

Applied Physics Letters

Spataru, Dan C.; Leonard, Francois L.

Motivated by recent experimental results we calculate from first-principles the lifetime of low-energy quasiparticles in bilayer graphene (BLG). Here, we take into account the scattering rate arising from electron-electron interactions within the GW approximation for the electron self-energy and consider several p-type doping levels ranging from 0 to ρ ≈ 2.4 × 1012 holes/cm2. In the undoped case we find that the average inverse lifetime scales linearly with energy away from the charge neutrality point, with values in good agreement with experiments. The decay rate is approximately three times larger than in monolayer graphene, a consequence of the enhanced screening in BLG. In the doped case, the dependence of the inverse lifetime on quasiparticle energy acquires a non-linear component due to the opening of an additional decay channel mediated by acoustic plasmons.

More Details

Neuromorphic Information Processing by Optical Media

Leonard, Francois L.; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field int the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ x 100λ with aperture density λ-2 achieve ~96% testing accuracy on the MNIST dataset, for an optimized distance ~100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

Ultra-low Voltage GaN Vacuum Nanoelectronics

2022 Compound Semiconductor Week, CSW 2022

Wang, George T.; Sapkota, Keshab R.; Talin, A.A.; Leonard, Francois L.; Gunning, Brendan P.; Vizkelethy, Gyorgy V.

The III-nitride semiconductors are attractive for on-chip, solid-state vacuum nanoelectronics, having high thermal and chemical stability, low electron affinity, and high breakdown fields. Here we report top-down fabricated, lateral gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with ultra-low turn-on voltages down to ~0.24 V, and stable high field emission currents, tested up to several microamps for single-emitter devices. We present gap-size and pressure dependent studies which provide insights into the design of future nanogap vacuum electron devices. The vacuum nanodiodes also show high resistance to damage from 2.5 MeV proton exposure. Preliminary results on the fabrication and characteristics of lateral GaN nano vacuum transistors will also be presented. The results show promise for a new class of robust, integrated, III-nitride based vacuum nanoelectronics.

More Details

Scanning ultrafast electron microscopy reveals photovoltage dynamics at a deeply buried p-Si/Si O2 interface

Physical Review B

Ellis, S.R.; Bartelt, Norman C.; Leonard, Francois L.; Celio, K.C.; Fuller, Elliot J.; Hughart, David R.; Garland, Diana; Marinella, Matthew J.; Michael, Joseph R.; Chandler, D.W.; Liao, B.; Talin, A.A.

The understanding and control of charge carrier interactions with defects at buried insulator/semiconductor interfaces is essential for achieving optimum performance in modern electronics. Here, we report on the use of scanning ultrafast electron microscopy (SUEM) to remotely probe the dynamics of excited carriers at a Si surface buried below a thick thermal oxide. Our measurements illustrate a previously unidentified SUEM contrast mechanism, whereby optical modulation of the space-charge field in the semiconductor modulates the electric field in the thick oxide, thus affecting its secondary electron yield. By analyzing the SUEM contrast as a function of time and laser fluence we demonstrate the diffusion mediated capture of excited carriers by interfacial traps.

More Details

Physics-Based Optical Neuromorphic Classification

Leonard, Francois L.; Teeter, Corinne M.; Vineyard, Craig M.

Typical approaches to classify scenes from light convert the light field to electrons to perform the computation in the digital electronic domain. This conversion and downstream computational analysis require significant power and time. Diffractive neural networks have recently emerged as unique systems to classify optical fields at lower energy and high speeds. Previous work has shown that a single layer of diffractive metamaterial can achieve high performance on classification tasks. In analogy with electronic neural networks, it is anticipated that multilayer diffractive systems would provide better performance, but the fundamental reasons for the potential improvement have not been established. In this work, we present extensive computational simulations of two - layer diffractive neural networks and show that they can achieve high performance with fewer diffractive features than single layer systems.

More Details

Thermal Infrared Detectors: expanding performance limits using ultrafast electron microscopy

Talin, A.A.; Ellis, Scott; Bartelt, Norman C.; Leonard, Francois L.; Perez, Christopher P.; Celio, Km; Fuller, Elliot J.; Hughart, David R.; Garland, Diana; Marinella, Matthew J.; Michael, Joseph R.; Chandler, D.W.; Young, Steve M.; Smith, Sean M.; Kumar, Suhas K.

This project aimed to identify the performance-limiting mechanisms in mid- to far infrared (IR) sensors by probing photogenerated free carrier dynamics in model detector materials using scanning ultrafast electron microscopy (SUEM). SUEM is a recently developed method based on using ultrafast electron pulses in combination with optical excitations in a pump- probe configuration to examine charge dynamics with high spatial and temporal resolution and without the need for microfabrication. Five material systems were examined using SUEM in this project: polycrystalline lead zirconium titanate (a pyroelectric), polycrystalline vanadium dioxide (a bolometric material), GaAs (near IR), InAs (mid IR), and Si/SiO 2 system as a prototypical system for interface charge dynamics. The report provides detailed results for the Si/SiO 2 and the lead zirconium titanate systems.

More Details

Co-Design of Free-Space Metasurface Optical Neuromorphic Classifiers for High Performance

ACS Photonics

Leonard, Francois L.; Backer, Adam S.; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field into the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ × 100λ with an aperture density λ-2 achieve ∼96% testing accuracy on the MNIST data set, for an optimized distance ∼100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

Carrier Diffusion Lengths in Continuously Grown and Etched-and-Regrown GaN Pin Diodes

IEEE Electron Device Letters

Celio, K.C.; Armstrong, Andrew A.; Talin, A.A.; Allerman, A.A.; Crawford, Mary H.; Pickrell, Gregory P.; Leonard, Francois L.

Advanced GaN power devices are promising for many applications in high power electronics but performance limitations due to material quality in etched-and-regrown junctions prevent their widespread use. Carrier diffusion length is a critical parameter that not only determines device performance but is also a diagnostic of material quality. Here we present the use of electron-beam induced current to measure carrier diffusion lengths in continuously grown and etched-and-regrown GaN pin diodes as models for interfaces in more complex devices. Variations in the quality of the etched-and-regrown junctions are observed and shown to be due to the degradation of the n-type material. We observe an etched-and-regrown junction with properties comparable to a continuously grown junction.

More Details

Nanoscale functionalized superconducting transport channels as photon detectors

Physical Review B

Spataru, Dan C.; Leonard, Francois L.

Single-photon detectors have typically consisted of macroscopic materials where both the photon absorption and transduction to an electrical signal happen. Newly proposed designs suggest that large arrays of nanoscale detectors could provide improved performance in addition to decoupling the absorption and transduction processes. Here we study the properties of such a detector consisting of a nanoscale superconducting (SC) transport channel functionalized by a photon absorber. We explore two detection mechanisms based on photoinduced electrostatic gating and magnetic effects. To this end we model the narrow channel as a one-dimensional atomic chain and use a self-consistent Keldysh-Nambu Green's function formalism to describe nonequilibrium effects and SC phenomena. We consider cases where the photon creates electrostatic and magnetic changes in the absorber, as well as devices with strong and weak coupling to the metal leads. Our results indicate that the most promising case is when the SC channel is weakly coupled to the leads and in the presence of a background magnetic field, where photoexcitation of a magnetic molecule can trigger a SC-to-normal transition in the channel that leads to a change in the device current several times larger than in the case of a normal-phase channel device.

More Details

Ultralow Voltage GaN Vacuum Nanodiodes in Air

Nano Letters

Sapkota, Keshab R.; Leonard, Francois L.; Talin, A.A.; Gunning, Brendan P.; Kazanowska, Barbara A.; Jones, Kevin S.; Wang, George T.

The III-nitride semiconductors have many attractive properties for field-emission vacuum electronics, including high thermal and chemical stability, low electron affinity, and high breakdown fields. Here, we report top-down fabricated gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with record ultralow turn-on voltages down to ∼0.24 V and stable high field-emission currents, tested up to several microamps for single-emitter devices. We leverage a scalable, top-down GaN nanofabrication method leading to damage-free and smooth surfaces. Gap-dependent and pressure-dependent studies provide new insights into the design of future, integrated nanogap vacuum electron devices. The results show promise for a new class of high-performance and robust, on-chip, III-nitride-based vacuum nanoelectronics operable in air or reduced vacuum.

More Details

Origami Terahertz Detectors Realized by Inkjet Printing of Carbon Nanotube Inks

ACS Applied Nano Materials

Llinas, Juan P.; Hekmaty, Michelle A.; Talin, A.A.; Leonard, Francois L.

Terahertz (THz) technology has shown promise for several applications, but limitations in sources and detectors have prevented broader adoption. Existing THz detectors are rigid, planar, and fabricated using complex technology, making it difficult to integrate into systems. Here we demonstrate THz detectors fabricated by inkjet printing on submicrometer thick, ultraflexible substrates. By developing p- and n-type carbon nanotube inks, we achieve optically thick p–n junction and p-type devices, enabling antenna-free pixels for THz imaging. By further designing and folding the printed devices, we realize origami-inspired architectures with improved performance over single devices, achieving a noise-equivalent power of 12 nW/Hz1/2 at room temperature with no voltage bias. Our approach opens avenues for nonplanar, foldable, deployable, insertable, and retractable THz detectors for applications in nondestructive inspection.

More Details

Design of High-Performance Photon-Number-Resolving Photodetectors Based on Coherently Interacting Nanoscale Elements

ACS Photonics

Leonard, Francois L.; Sarovar, Mohan S.; Young, Steve M.

A number of applications in basic science and technology would benefit from high-fidelity photon-number-resolving photodetectors. While some recent experimental progress has been made in this direction, the requirements for true photon number resolution are stringent, and no design currently exists that achieves this goal. Here we employ techniques from fundamental quantum optics to demonstrate that detectors composed of subwavelength elements interacting collectively with the photon field can achieve high-performance photon number resolution. We propose a new design that simultaneously achieves photon number resolution, high efficiency, low jitter, low dark counts, and high count rate. We discuss specific systems that satisfy the design requirements, pointing to the important role of nanoscale device elements.

More Details
Results 1–25 of 148
Results 1–25 of 148