Field Emission Characteristics of Solid-State GaN-Based Vacuum Nanoelectronic Devices
Abstract not provided.
Abstract not provided.
Abstract not provided.
Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies.
Physical Review Research
Single-photon detectors have historically consisted of macroscopic-sized materials but recent experimental and theoretical progress suggests new approaches based on nanoscale and molecular electronics. Here, we present a theoretical study of photodetection in a system composed of a quantum electronic transport channel functionalized by a photon absorber. Notably, the photon field, absorption process, transduction mechanism, and measurement process are all treated as part of one fully coupled quantum system, with explicit interactions. Using nonequilibrium, time-dependent quantum transport simulations, we reveal the unique temporal signatures of the single-photon detection process, and show that the system can be described using optical Bloch equations, with a new nonlinearity as a consequence of time-dependent detuning caused by the back-action from the transport channel via the dynamical Stark effect. We compute the photodetector signal-to-noise ratio and demonstrate that single-photon detection at high count rate is possible for realistic parameters by exploiting a unique nonequilibrium control of back-action.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Photonics Research
AlGaN-channel high electron mobility transistors (HEMTs) were operated as visible- and solar-blind photodetectors by using GaN nanodots as an optically active floating gate. The effect of the floating gate was large enough to switch an HEMT from the off-state in the dark to an on-state under illumination. This opto-electronic response achieved responsivity > 108 A/W at room temperature while allowing HEMTs to be electrically biased in the offstate for low dark current and low DC power dissipation. The influence of GaN nanodot distance from the HEMT channel on the dynamic range of the photodetector was investigated, along with the responsivity and temporal response of the floating gate HEMT as a function of optical intensity. The absorption threshold was shown to be controlled by the AlN mole fraction of the HEMT channel layer, thus enabling the same device design to be tuned for either visible- or solar-blind detection.
Abstract not provided.
Physical Review A
Photodetection plays a key role in basic science and technology, with exquisite performance having been achieved down to the single-photon level. Further improvements in photodetectors would open new possibilities across a broad range of scientific disciplines and enable new types of applications. However, it is still unclear what is possible in terms of ultimate performance and what properties are needed for a photodetector to achieve such performance. Here, we present a general modeling framework for photodetectors whereby the photon field, the absorption process, and the amplification process are all treated as one coupled quantum system. The formalism naturally handles field states with single or multiple photons as well as a variety of detector configurations and includes a mathematical definition of ideal photodetector performance. The framework reveals how specific photodetector architectures introduce limitations and tradeoffs for various performance metrics, providing guidance for optimization and design.
ACS Applied Materials and Interfaces
HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal-organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10-11 S/cm for the parent Cu3BTC2 material to 10-1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.
Abstract not provided.
Abstract not provided.
Small
Detection of low intensity light down to a few photons requires photodetectors with high gain. A new photodetector is reported based on C60-sensitized aligned carbon nanotube (CNT) transistors with an extremely high responsivity of 108 A W−1 (gain > 108) in the ultraviolet and visible range, and 720 A W−1 (gain = 940) in the infrared range. In contrast to most sensitized phototransistors that operate on the photogating effect, the new photodetector operates on the modulation of the electrons scattering in the CNTs, leading to negative photoconductivity. Comparison with similar photodetectors using random CNT networks shows the benefit of using aligned CNTs. At room temperature, the aligned CNT photodetectors are demonstrated to detect a few tens of photons per CNT.
Abstract not provided.
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching, which uses quantum confinement effects to control size, can potentially enable the fabrication of epitaxial quantum nanostructures with unprecedented accuracy and precision across a wide range of materials systems. However, many open questions remain about this new technique, including its limitations and broader applicability. In this project, using an integrated experimental and theoretical modeling approach, we pursue a greater understanding of the time-dependent QSC-PEC etch process and to uncover the underlying mechanisms that determine its ultimate accuracy and precision. We also seek to broaden our understanding of the scope of its ultimate applicability in emerging nanostructures and nanodevices.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review A
Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.
Abstract not provided.