Publications

Results 26–50 of 80

Search results

Jump to search filters

Monitoring, Understanding, and Predicting the Growth of Methane Emissions in the Arctic

Bambha, Ray B.; Lafranchi, Brian W.; Schrader, Paul E.; Roesler, Erika L.; Taylor, Mark A.; Lucero, Daniel A.; Ivey, Mark D.; Michelsen, Hope A.

Concern over Arctic methane (CH4) emissions has increased following recent discoveries of poorly understood sources and predictions that methane emissions from known sources will grow as Arctic temperatures increase. New efforts are required to detect increases and explain sources without being confounded by the multiple sources. Methods for distinguishing different sources are critical. We conducted measurements of atmospheric methane and source tracers and performed baseline global atmospheric modeling to begin assessing the climate impact of changes in atmospheric methane. The goal of this project was to address uncertainties in Arctic methane sources and their potential impact on climate by (1) deploying newly developed trace-gas analyzers for measurements of methane, methane isotopologues, ethane, and other tracers of methane sources in the Barrow, AK, (2) characterizing methane sources using high-resolution atmospheric chemical transport models and tracer measurements, and (3) modeling Arctic climate using the state-of-the-art high- resolution Spectral Element Community Atmosphere Model (CAM-SE).

More Details

Deciphering Atmospheric Ice Nucleation using Molecular-Scale Microscopy

Thurmer, Konrad T.; Friddle, Raymond W.; Wheeler, Lauren B.; Bartelt, Norman C.; Roesler, Erika L.; Kolasinski, Robert K.

Atmospheric ice affects Earth's radiative properties and initiates most precipitation. Growing ice typically requires a particle, often airborne mineral dust, e.g., to catalyze freezing of supercooled cloud droplets. How chemistry, structure and morphology determine the ice-nucleating ability of minerals remains elusive. Not surprisingly, poor understanding of a erosol-cloud interactions is a major source of uncertainty in climate models. In this project, we combine d optical microscopy with atomic force microscopy to explore the mechanisms of initial ice formation on alkali feldspar, a mineral proposed to dominate ice nucleation in Earth's atmosphere. When cold air becomes supersaturated with respect to water, we discovered that supercooled liquid water condenses at steps without having to overcome a nucleation barrier, and subsequently freezes quickly. Our results imply that steps, common even on macroscopically flat feldspar surfaces, can accelerate water condensation followed by freezing, thus promoting glaciation and dehydration of mixed - phase clouds. Motivated by the fact that current climate simulations do not properly account for feldspar's extreme efficiency to nucleate ice, we modified DOE's climate model, the Energy Exascale Earth System Model (E3SM), to increase the activation of ice nucleation on feldspar dust. This included adding a new aerosol tracer into the model and updating the ice nucleation parameterization, based on Classical Nucleation Theory, for multiple mineral dust tracers. Although t he se modifications have little impact on global averages , predictions of regional averages can be strongly affected .

More Details

Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling

Geoscientific Model Development

Tang, Qi; Klein, Stephen A.; Xie, Shaocheng; Lin, Wuyin; Golaz, Jean C.; Roesler, Erika L.; Taylor, Mark A.; Rasch, Philip J.; Bader, David C.; Berg, Larry K.; Caldwell, Peter; Giangrande, Scott E.; Neale, Richard B.; Qian, Yun; Riihimaki, Laura D.; Zender, Charles S.; Zhang, Yuying; Zheng, Xue

Climate simulations with more accurate process-level representation at finer resolutions (<100 km) are a pressing need in order to provide more detailed actionable information to policy makers regarding extreme events in a changing climate. Computational limitation is a major obstacle for building and running high-resolution (HR, here 0.25° average grid spacing at the Equator) models (HRMs). A more affordable path to HRMs is to use a global regionally refined model (RRM), which only simulates a portion of the globe at HR while the remaining is at low resolution (LR, 1°). In this study, we compare the Energy Exascale Earth System Model (E3SM) atmosphere model version 1 (EAMv1) RRM with the HR mesh over the contiguous United States (CONUS) to its corresponding globally uniform LR and HR configurations as well as to observations and reanalysis data. The RRM has a significantly reduced computational cost (roughly proportional to the HR mesh size) relative to the globally uniform HRM. Over the CONUS, we evaluate the simulation of important dynamical and physical quantities as well as various precipitation measures. Differences between the RRM and HRM over the HR region are predominantly small, demonstrating that the RRM reproduces the precipitation metrics of the HRM over the CONUS. Further analysis based on RRM simulations with the LR vs. HR model parameters reveals that RRM performance is greatly influenced by the different parameter choices used in the LR and HR EAMv1. This is a result of the poor scale-aware behavior of physical parameterizations, especially for variables influencing sub-grid-scale physical processes. RRMs can serve as a useful framework to test physics schemes across a range of scales, leading to improved consistency in future E3SM versions. Applying nudging-to-observations techniques within the RRM framework also demonstrates significant advantages over a free-running configuration for use as a test bed and as such represents an efficient and more robust physics test bed capability. Our results provide additional confirmatory evidence that the RRM is an efficient and effective test bed for HRM development.

More Details

The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution

Journal of Advances in Modeling Earth Systems

Golaz, Jean C.; Caldwell, Peter M.; Van Roekel, Luke P.; Petersen, Mark R.; Tang, Qi; Wolfe, Jonathan D.; Abeshu, Guta; Anantharaj, Valentine; Asay-Davis, Xylar S.; Bader, David C.; Baldwin, Sterling A.; Bisht, Gautam; Bogenschutz, Peter A.; Branstetter, Marcia; Brunke, Michael A.; Brus, Steven R.; Burrows, Susannah M.; Cameron-Smith, Philip J.; Donahue, Aaron S.; Deakin, Michael; Easter, Richard C.; Evans, Katherine J.; Feng, Yan; Flanner, Mark; Foucar, James G.; Fyke, Jeremy G.; Griffin, Brian M.; Hannay, Cecile; Harrop, Bryce E.; Hunke, Elizabeth C.; Jacob, Robert L.; Jacobsen, Douglas W.; Jeffery, Nicole; Jones, Philip W.; Keen, Noel D.; Klein, Stephen A.; Larson, Vincent E.; Leung, L.R.; Li, Hong Y.; Lin, Wuyin; Lipscomb, William H.; Ma, Po L.; Mahajan, Salil; Maltrud, Mathew E.; Mametjanov, Azamat; Mcclean, Julie L.; Mccoy, Renata B.; Neale, Richard B.; Price, Stephen F.; Qian, Yun; Rasch, Philip J.; Reeves Eyre, J.E.J.; Riley, William J.; Ringler, Todd D.; Roberts, Andrew F.; Roesler, Erika L.; Salinger, Andrew G.; Shaheen, Zeshawn; Shi, Xiaoying; Singh, Balwinder; Tang, Jinyun; Taylor, Mark A.; Thornton, Peter E.; Turner, Adrian K.; Veneziani, Milena; Wan, Hui; Wang, Hailong; Wang, Shanlin; Williams, Dean N.; Wolfram, Phillip J.; Worley, Patrick H.; Xie, Shaocheng; Yang, Yang; Yoon, Jin H.; Zelinka, Mark D.; Zender, Charles S.; Zeng, Xubin; Zhang, Chengzhu; Zhang, Kai; Zhang, Yuying; Zheng, Xue; Zhou, Tian; Zhu, Qing

This work documents the first version of the U.S. Department of Energy (DOE) new Energy Exascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission-relevant water cycle questions. Its components include atmosphere and land (110-km grid spacing), ocean and sea ice (60 km in the midlatitudes and 30 km at the equator and poles), and river transport (55 km) models. This base configuration will also serve as a foundation for additional configurations exploring higher horizontal resolution as well as augmented capabilities in the form of biogeochemistry and cryosphere configurations. The performance of E3SMv1 is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima simulations consisting of a long preindustrial control, historical simulations (ensembles of fully coupled and prescribed SSTs) as well as idealized CO2 forcing simulations. The model performs well overall with biases typical of other CMIP-class models, although the simulated Atlantic Meridional Overturning Circulation is weaker than many CMIP-class models. While the E3SMv1 historical ensemble captures the bulk of the observed warming between preindustrial (1850) and present day, the trajectory of the warming diverges from observations in the second half of the twentieth century with a period of delayed warming followed by an excessive warming trend. Using a two-layer energy balance model, we attribute this divergence to the model's strong aerosol-related effective radiative forcing (ERFari+aci = −1.65 W/m2) and high equilibrium climate sensitivity (ECS = 5.3 K).

More Details

High Resolution Measurements and Modeling in the Arctic

Roesler, Erika L.

This report details the activity of the project, "High Resolution Modeling and Measurements in the Arctic" spanning Fiscal Years 2016 - 2018 supported by the Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program. The project's primary goal was to test the hypothesis that global climate model bias of low boundary layer clouds lacking liquid water in the Arctic could be improved by increasing horizontal resolution in the model. As model resolution is constrained by computational resources, four different model types were explored and compared to test the project's primary theory. Given the Arctic is a data-sparse region lacking robust data sets of liquid water in clouds, this project also obtained in situ measurements of low clouds with sensors on a tethered balloon system to constrain and compare with the models. Although other model biases remained, the liquid water path generally increased with resolution, supporting the original hypothesis.

More Details

Aerial Assessment of Liquid in Clouds at Oliktok (Final Campaign Report)

Roesler, Erika L.

Aerial Assessment of Liquid in Clouds at Oliktok (AALCO) Intensive Operation Period (IOP) began in October, 2016 and ended in October, 2017 at the ARM Mobile Facility-3 (AMF-3) at Oliktok Point, Alaska. The operations tested super-cooled liquid water sensors (SLWCs), leaf-wetness sensors, radiosondes, and a distributed temperature sensor (DTS) on tethered balloon system (TBS) platforms throughout the period. An auto-reeler system, a helikite, and a aerostat were tested. When conditions were optimal, the aerostat was preferred to the helikite and the auto-reeler. It was found the SLWCs had better transmission and sensitivity to relay information about the near-surface cloudy boundary layer than the leaf-wetness sensors. The DTS was also found to give useful information about the atmospheric column and deployment is condition-dependent. Results from the SLWCs and DTS are being compared with high resolution Large Eddy Simulations (LES) in the System for Atmospheric Modeling (SAM).

More Details
Results 26–50 of 80
Results 26–50 of 80