Electrical polarization and defect transport are examined in 0.8BaTiO3–0.2BiZn0.5Ti0.5O3, an attractive capacitor material for high power electronics. Oxygen vacancies are suggested to be the majority charge carrier at or below 250°C with a grain conduction hopping activation energy of 0.97 eV and 0.92 eV for thermally stimulated depolarization current (TSDC) and impedance spectroscopy measurements, respectively. At higher temperature, thermally generated electronic conduction with an activation energy of 1.6 eV is dominant. Significant oxygen vacancy concentration is indicated (up to ~1%) due to cation vacancy formation (i.e., acceptor defects) from observed Bi (and likely Zn) volatility. Oxygen vacancy diffusivity is estimated to be 10-12.8 cm2/s at 250°C. Low diffusivity and high activation energies are indicative of significant defect interactions. Dipolar oxygen vacancy defects are also indicated, with an activation energy of 0.59 eV from TSDC measurements. In conclusion, the large oxygen vacancy content leads to a short lifetime during high voltage (30 kV/cm), high temperature (250°C) direct current (DC) electrical measurements.
Dzara, Michael J.; Campello, Arthur C.; Breidenbach, Aeryn T.; Strange, Nicholas A.; Park, James E.; Ambrosini, Andrea A.; Coker, Eric N.; Ginley, David S.; Lee, Young S.; Bell, Robert T.; Smaha, Rebecca W.
Material design is increasingly used to realize desired functional properties, and the perovskite structure family is one of the richest and most diverse: perovskites are employed in many applications due to their structural flexibility and compositional diversity. Hexagonal, layered perovskite structures with chains of face-sharing transition metal oxide octahedra have attracted great interest as quantum materials due to their magnetic and electronic properties. Ba4MMn3O12, a member of the “12R” class of hexagonal, layered perovskites, contains trimers of face-sharing MnO6 octahedra that are linked by a corner-sharing, bridging MO6 octahedron. Here, we investigate cluster magnetism in the Mn3O12 trimers and the role of this bridging octahedron on the magnetic properties of two isostructural 12R materials by systematically changing the M4+ cation from nonmagnetic Ce4+ (f0) to magnetic Pr4+ (f1). We synthesized 12R-Ba4MMn3O12 (M= Ce, Pr) with high phase purity and characterized their low-temperature crystal structures and magnetic properties. Using substantially higher purity samples than previously reported, we confirm the frustrated antiferromagnetic ground state of 12R-Ba4PrMn3O12 below TN ≈ 7.75 K and explore the cluster magnetism of its Mn3O12 trimers. Despite being atomically isostructural with 12R-Ba4CeMn3O12, the f1 electron associated with Pr4+ causes much more complex magnetic properties in 12R-Ba4PrMn3O12. In 12R-Ba4PrMn3O12, we observe a sharp, likely antiferromagnetic transition at T2 ≈ 12.15 K and an additional transition at T1 ≈ 200 K, likely in canted antiferromagnetic order. These results suggest that careful variation of composition within the family of hexagonal, layered perovskites can be used to tune material properties using the complex role of the Pr4+ ion in magnetism.
Continued dependence on crude oil and natural gas resources for fossil fuels has caused global atmospheric carbon dioxide (CO2) emissions to increase to record-setting proportions. There is an urgent need for efficient and inexpensive carbon sequestration systems to mitigate large-scale CO2 emissions from industrial flue gas. Carbonic anhydrase (CA) has shown high potential for enhanced CO2 capture applications compared to conventional absorption-based methods currently utilized in various industrial settings. This study aims to understand structural aspects that contribute to the stability of CA enzymes critical for their applications in industrial processes, which require the ability to withstand conditions different from their native environments. Here, we evaluated the thermostability and enzyme activity of mesophilic and thermophilic CA variants at different temperature conditions and in the presence of atmospheric gas pollutants like nitrogen oxides (NOx) and sulphur oxides (SOx). Based on our enzyme activity assays and molecular dynamics simulations, we see increased conformational stability and CA activity levels in thermostable CA variants incubated week-long at different temperature conditions. The thermostable CA variants also retained high levels of CA activity despite changes in solution pH due to increasing NOx and SOx concentrations. Furthermore, a loss of CA activity was observed only at high concentrations of NOx/SOx that possibly can be minimized with appropriate buffered solutions.
Cast Monel alloys are used in many industrial applications that require a combination of good mechanical properties and excellent resistance to corrosion. Despite relative widespread use, there has been limited prior research investigating the fundamental composition–structure–property relationships. In this work, microstructural characterization, thermal analysis, electron probe microanalysis, tensile testing, and Varestraint testing were used to assess the effects of variations in nominal composition on the solidification path, microstructure, mechanical properties, and solidification cracking susceptibility of cast Monel alloys. It was found that Si segregation caused the formation of silicides at the end of solidification in grades containing at least 3 wt pct Si. While increases to Si content led to significant improvements in strengthening due to the precipitation of β1-Ni3Si, the silicide eutectics acted as crack nucleation sites during tensile loading which severely reduced ductility. The solidification cracking susceptibility of low-Si Monel alloys was found to be relatively low. However, increases to Si concentration and the onset of associated eutectic reactions increased the solidification temperature range and drastically reduced cracking resistance. Increases in the Cu and Mn concentrations were found to reduce the solubility limit of Si in austenite which promoted additional eutectic formation and exacerbated the reductions in ductility and/or weldability.
Non-stoichiometric perovskite oxides have been studied as a new family of redox oxides for solar thermochemical hydrogen (STCH) production owing to their favourable thermodynamic properties. However, conventional perovskite oxides suffer from limited phase stability and kinetic properties, and poor cyclability. Here, we report a strategy of introducing A-site multi-principal-component mixing to develop a high-entropy perovskite oxide, (La1/6Pr1/6Nd1/6Gd1/6Sr1/6Ba1/6)MnO3 (LPNGSB_Mn), which shows desirable thermodynamic and kinetics properties as well as excellent phase stability and cycling durability. LPNGSB_Mn exhibits enhanced hydrogen production (?77.5 mmol moloxide?1) compared to (La2/3Sr1/3)MnO3 (?53.5 mmol moloxide?1) in a short 1 hour redox duration and high STCH and phase stability for 50 cycles. LPNGSB_Mn possesses a moderate enthalpy of reduction (252.51-296.32 kJ (mol O)?1), a high entropy of reduction (126.95-168.85 J (mol O)?1 K?1), and fast surface oxygen exchange kinetics. All A-site cations do not show observable valence changes during the reduction and oxidation processes. This research preliminarily explores the use of one A-site high-entropy perovskite oxide for STCH.
The fraction of tritium converted to the water form in a fire scenario is one of the metrics of greatest interest for radiological safety assessments. The conversion fraction is one of the prime variables contributing to the hazard assessment. This paper presents measurements of oxidation rates for the non-radioactive hydrogen isotopes (protium and deuterium) at sub-flammable concentrations that are typical of many of the most likely tritium release scenarios. These measurements are fit to a simplified 1-step kinetic rate expression, and the isotopic trends for protium and deuterium are extrapolated to produce a model appropriate for tritium. The effects of the new kinetic models are evaluated via CFD simulations of an ISO-9705 standard room fire that includes a trace release of hydrogen isotope (tritium), illustrating the high importance of the correct (measurement-based) kinetics to the outcome of the simulated conversion.
Cast Monel alloys are used in applications requiring a combination of good mechanical properties and excellent resistance to corrosion. Despite prevalent industrial use, relatively few studies have been conducted to investigate the relationships between composition, solidification behavior, and microstructure. Given that these alloys are used in the cast and welded conditions, these factors have a significant influence over the material properties. Here, in this work, microstructural characterization, electron probe microanalysis, X-ray diffraction, and differential scanning calorimetry were used to study how changes in Si and Nb concentrations affected the solidification path and microstructure of Monel alloys. It was found that increasing Nb concentration stabilized higher amounts of MC carbides and suppressed graphite formation during solidification. It was also found that the high nominal concentration and segregation of Si to the liquid led to the formation of Ni31Si12 and other silicides via terminal eutectic reactions at the end of solidification. A pseudo-binary solidification diagram was constructed using experimental data and was applied to predict the mass fraction of solidified eutectic as a function of composition. The modeled microstructures were found to be in good agreement with experimentally measured phase fractions.
The resurgence of interest in hydrogen-related technologies has stimulated new studies aimed at advancing lesser-developed water-splitting processes, such as solar thermochemical hydrogen production (STCH). Progress in STCH has been largely hindered by a lack of new materials able to efficiently split water at a rate comparable to ceria under identical experimental conditions. BaCe0.25Mn0.75O3 (BCM) recently demonstrated enhanced hydrogen production over ceria and has the potential to further our understanding of two-step thermochemical cycles. A significant feature of the 12R hexagonal perovskite structure of BCM is the tendency to, in part, form a 6H polytype at high temperatures and reducing environments (i.e., during the first step of the thermochemical cycle), which may serve to mitigate degradation of the complex oxide. An analogous compound, namely BaNb0.25Mn0.75O3 (BNM) with a 12R structure was synthesized and displays nearly complete conversion to the 6H structure under identical reaction conditions as BCM. The structure of the BNM-6H polytype was determined from Rietveld refinement of synchrotron powder X-ray diffraction data and is presented within the context of the previously established BCM-6H structure.
In this study, oils from various sources were subjected to pyrolysis conditions; that is, without oxidizer, as the samples were heated to 500 °C, and held at that temperature. The oils studied included: (1) heavy oil from Grassy Creek, Missouri; (2) oil from tar sands of Asphalt Ridge in Utah; (3) mid-continent oil shales of three formations (two of Chattanooga formation, Pennsylvanian (age) formation, and Woodford formation); and (4) a Colorado Piceance Basin shale. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) with either gas chromatography (GC) or mass spectrometry (MS) were used to quantify the produced gases evolved in the tests. Purge gases of helium, argon, and humid carbon dioxide were utilized. Larger scale pyrolysis tests were conducted in a tube furnace coupled to a MS and a GC. The results consistently showed that pyrolysis occurred between 300 °C and 500 °C, with the majority of gases being mainly hydrogen and light alkanes. This behavior was essentially consistent, regardless of the oil source.
Roychoudhury, Subhayan; Shulda, Sarah; Goyal, Anuj; Bell, Robert T.; Sainio, Sami; Strange, Nicholas A.; Park, James E.; Coker, Eric N.; Lany, Stephan; Ginley, David S.; Prendergast, David
BaCe0.25Mn0.75O3−δ (BCM), a non-stoichiometric oxide with a layered perovskite-like crystal structure, has recently emerged as a prospective contender for application in renewable energy harvesting by solar thermochemical hydrogen generation. Using solar-thermal energy and a reducing environment, oxygen vacancies can be created in high-temperature BCM, and the reduced crystal so obtained can, in turn, produce H2 by stripping oxygen from H2O. Therefore, a first step toward understanding the working mechanism and optimizing the performance of BCM is a thorough and comparative analysis of the electronic structure of the pristine and the reduced material. In this paper, we probe the electronic structure of BCM using the combined effort of first-principles calculations and experimental O K-edge X-ray absorption spectroscopy (XAS). The computed projected density of states (PDOS) and orbital plots are used to propose a simplified model for orbital mixing between the oxygen and metal atoms. With the help of state-of-the-art simulations, we are able to find the origins of the XAS peaks and categorize them on the basis of contribution from Ce and Mn. For the reduced crystal, the calculations show that the change in electron density resulting from the reduction is strongly localized around the oxygen vacancy. Experimental measurements reveal a marked lowering of the first O K-edge peak in the reduced crystal. Using theoretical analysis, this is shown to result from lifting of spin degeneracy in the absorption peaks as well as from a diminished O 2p contribution to the frontier unoccupied orbitals, in accordance with the tight binding scheme. The simulated results serve as a reference for the extent of spectral change as a function of the percentage of oxygen vacancies in the reduced crystal. Our study paves the way for the investigation of the working mechanism of BCM and for computational and experimental efforts aimed at design and discovery of efficient water-splitting oxides.
Negative and zero coefficient of thermal expansion (CTE) materials are of interest for developing polymer composites in electronic circuits that match the expansion of Si and in zero CTE supports for optical components, e.g., mirrors. In this work, the processing challenges and stability of ZrW2O8, HfW2O8, HfMgW3O12, Al(HfMg)0.5W3O12, and Al0.5Sc1.5W3O12 negative and zero thermal expansion coefficient ceramics are discussed. Al0.5Sc1.5W3O12 is demonstrated to be a relatively simple oxide to fabricate in large quantity and is shown to exhibit single phase up to 1300 °C in air and inert N2 environments. The negative and zero CTE behavior was confirmed with dilatometry. Thermal conductivity and heat capacity were reported for the first time for HfMgW3O12 and Al0.5Sc1.5W3O12 and thermal conductivity was found to be very low (~0.5 W/mK). Grüneisen parameter is also estimated. Methods for integration of Al0.5Sc1.5W3O12 with other materials was examined and embedding 50 vol% of the ceramic powder in flexible epoxy was demonstrated with a commercial vendor.
Babiniec, Sean M.; Reinholz, Emilee L.; Coker, Eric N.; Larsen, Marin E.
Intumescent materials are in wide use as protective coatings in fire protection or thermal management applications. These materials undergo chemical reactions occurring from approximately 300°C to 900°C, which outgas and expand the material, providing an appreciable increase in insulative performance. However, the complicated chemical mechanisms and large changes in materials properties complicate the incorporation of these materials into predictive thermal models. This document serves to outline the thermochemical characterization of select intumescent materials, the extraction of relevant parameters, and the incorporation of these parameters into the ChemEQ reaction model implemented in Aria. This work was performed in 2016 and documented in a draft SAND report in March 2017. In 2022, the draft SAND report was discovered and put through R&A.
Barium titanate (BTO) nanoparticles show great potential for use in electrostatic capacitors with high energy density. This includes both polymer composite and sintered capacitors. However, questions about the nanoparticles’ size distribution, amount of agglomeration, and surface ligand effect on performance properties remain. Reducing particle agglomeration is a crucial step to understanding the properties of nanoscale particles, as agglomeration has significant effects on the composite dielectric constant. BTO surface functionalization using phosphonic acids is known reduce BTO nanoparticle agglomeration. We explore solution synthesized 10 nm BTO particles with tert-butylphosphonic acid ligands. Recent methods to quantifying agglomeration using an epoxy matrix before imaging shows that tert-butylphosphonic acid ligands reduce BTO agglomeration by 33%. Thermometric, spectroscopic, and computational methods provide confirmation of ligand binding and provide evidence of multiple ligand binding modes on the BTO particle surface.
Swelling clay hydration/dehydration is important to many environmental and industrial processes. Experimental studies usually probe equilibrium hydration states in an averaged manner and thus cannot capture the fast water transport and structural change in interlayers during hydration/dehydration. Using molecular simulations and thermogravimetric analyses, we observe a two-stage dehydration process. The first stage is controlled by evaporation at the edges: water molecules near hydrophobic sites and the first few water molecules of the hydration shell of cations move fast to particle edges for evaporation. The second stage is controlled by slow desorption of the last 1-2 water molecules from the cations and slow transport through the interlayers. The two-stage dehydration is strongly coupled with interlayer collapse and the coordination number changes of cations, all of which depend on layer charge distribution. This mechanistic interpretation of clay dehydration can be key to the coupled chemomechanical behavior in natural/engineered barriers.
The resurgence of interest in a hydrogen economy and the development of hydrogen-related technologies has initiated numerous research and development efforts aimed at making the generation, storage, and transportation of hydrogen more efficient and affordable. Solar thermochemical hydrogen production (STCH) is a process that potentially exhibits numerous benefits such as high reaction efficiencies, tunable thermodynamics, and continued performance over extended cycling. Although CeO2 has been the de facto standard STCH material for many years, more recently 12R-Ba4CeMn3O12 (BCM) has demonstrated enhanced hydrogen production at intermediate H2/H2O conditions compared to CeO2, making it a contender for large-scale hydrogen production. However, the thermo-reduction stability of 12R-BCM dictates the oxygen partial pressure (pO2) and temperature conditions optimal for cycling. In this study, we identify the formation of a 6H-BCM polytype at high temperature and reducing conditions, experimentally and computationally, as a mechanism and pathway for 12R-BCM decomposition. 12R-BCM was synthesized with high purity and then controllably reduced using thermogravimetric analysis (TGA). Synchrotron X-ray diffraction (XRD) data is used to identify the formation of a 6H-Ba3Ce0.75Mn2.25O9 (6H-BCM) polytype that is formed at 1350 degrees C under strongly reducing pO2. Density functional theory (DFT) total energy and defect calculations show a window of thermodynamic stability for the 6H-polytype consistent with the XRD results. These data provide the first evidence of the 6H-BCM polytype and could provide a mechanistic explanation for the superior water-splitting behaviors of 12R-BCM.
This is the Sandia report from a joint NSRD project between Sandia National Labs and Savannah River National Labs. The project involved development of simulation tools and data intended to be useful for tritium operations safety assessment. Tritium is a synthetic isotope of hydrogen that has a limited lifetime, and it is found at many tritium facilities in the form of elemental gas (T2). The most serious risk of reasonable probability in an accident scenario is when the tritium is released and reacts with oxygen to form a water molecule, which is subsequently absorbed into the human body. This tritium oxide is more readily absorbed by the body and therefore represents a limiting factor for safety analysis. The abnormal condition of a fire may result in conversion of the safer T2 inventory to the more hazardous oxidized form. It is this risk that tends to govern the safety protocols. Tritium fire datasets do not exist, so prescriptive safety guidance is largely conservative and reliant on means other than testing to formulate guidelines. This can have a consequence in terms of expensive and/or unnecessary mitigation design, handling protocols, and operational activities. This issue can be addressed through added studies on the behavior of tritium under representative conditions. Due to the hazards associated with the tests, this is being approached mainly from a modeling and simulation standpoint and surrogate testing. This study largely establishes the capability to generate simulation predictions with sufficiently credible characteristics to be accepted for safety guidelines as a surrogate for actual data through a variety of testing and modeling activities.