Publications

Results 26–50 of 163

Search results

Jump to search filters

Tritium Fires: Simulation and Safety Assessment

Brown, Alexander B.; Shurtz, Randy S.; Takahashi, Lynelle K.; Coker, Eric N.; Hewson, John C.; Hobbs, Michael L.

This is the Sandia report from a joint NSRD project between Sandia National Labs and Savannah River National Labs. The project involved development of simulation tools and data intended to be useful for tritium operations safety assessment. Tritium is a synthetic isotope of hydrogen that has a limited lifetime, and it is found at many tritium facilities in the form of elemental gas (T2). The most serious risk of reasonable probability in an accident scenario is when the tritium is released and reacts with oxygen to form a water molecule, which is subsequently absorbed into the human body. This tritium oxide is more readily absorbed by the body and therefore represents a limiting factor for safety analysis. The abnormal condition of a fire may result in conversion of the safer T2 inventory to the more hazardous oxidized form. It is this risk that tends to govern the safety protocols. Tritium fire datasets do not exist, so prescriptive safety guidance is largely conservative and reliant on means other than testing to formulate guidelines. This can have a consequence in terms of expensive and/or unnecessary mitigation design, handling protocols, and operational activities. This issue can be addressed through added studies on the behavior of tritium under representative conditions. Due to the hazards associated with the tests, this is being approached mainly from a modeling and simulation standpoint and surrogate testing. This study largely establishes the capability to generate simulation predictions with sufficiently credible characteristics to be accepted for safety guidelines as a surrogate for actual data through a variety of testing and modeling activities.

More Details

AN EXPERIMENTAL AND MODELING STUDY OF OXIDATION OF HYDROGEN ISOTOPES AT TRACE CONCENTRATIONS

Proceedings of the Thermal and Fluids Engineering Summer Conference

Shurtz, Randy S.; Coker, Eric N.; Brown, Alexander B.; Takahashi, Lynelle K.

In accident scenarios involving release of tritium during handling and storage, the level of risk to human health is dominated by the extent to which radioactive tritium is oxidized to the water form (T2O or THO). At some facilities, tritium inventories consist of very small quantities stored at sub-atmospheric pressure, which means that tritium release accident scenarios will likely produce concentrations in air that are well below the lower flammability limit. It is known that isotope effects on reaction rates should result in slower oxidation rates for heavier isotopes of hydrogen, but this effect has not previously been quantified for oxidation at concentrations well below the lower flammability limit for hydrogen. This work describes hydrogen isotope oxidation measurements in an atmospheric tube furnace reactor. These measurements consist of five concentration levels between 0.01% and 1% protium or deuterium and two residence times. Oxidation is observed to occur between about 550°C and 800°C, with higher levels of conversion achieved at lower temperatures for protium with respect to deuterium at the same volumetric inlet concentration and residence time. Computational fluid dynamics simulations of the experiments were used to customize reaction orders and Arrhenius parameters in a 1-step oxidation mechanism. The trends in the rates for protium and deuterium are extrapolated based on guidance from literature to produce kinetic rate parameters appropriate for tritium oxidation at low concentrations.

More Details

Computationally Accelerated Discovery and Experimental Demonstration of Gd0.5La0.5Co0.5Fe0.5O3 for Solar Thermochemical Hydrogen Production

Frontiers in Energy Research

Park, James E.; Bare, Zachary J.L.; Morelock, Ryan J.; Rodriguez, Mark A.; Ambrosini, Andrea A.; Musgrave, Charles B.; McDaniel, Anthony H.; Coker, Eric N.

Solar thermochemical hydrogen (STCH) production is a promising method to generate carbon neutral fuels by splitting water utilizing metal oxide materials and concentrated solar energy. The discovery of materials with enhanced water-splitting performance is critical for STCH to play a major role in the emerging renewable energy portfolio. While perovskite materials have been the focus of many recent efforts, materials screening can be time consuming due to the myriad chemical compositions possible. This can be greatly accelerated through computationally screening materials parameters including oxygen vacancy formation energy, phase stability, and electron effective mass. In this work, the perovskite Gd0.5La0.5Co0.5Fe0.5O3 (GLCF), was computationally determined to be a potential water splitter, and its activity was experimentally demonstrated. During water splitting tests with a thermal reduction temperature of 1,350°C, hydrogen yields of 101 μmol/g and 141 μmol/g were obtained at re-oxidation temperatures of 850 and 1,000°C, respectively, with increasing production observed during subsequent cycles. This is a significant improvement from similar compounds studied before (La0.6Sr0.4Co0.2Fe0.8O3 and LaFe0.75Co0.25O3) that suffer from performance degradation with subsequent cycles. Confirmed with high temperature x-ray diffraction (HT-XRD) patterns under inert and oxidizing atmosphere, the GLCF mainly maintained its phase while some decomposition to Gd2-xLaxO3 was observed.

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny; Guglielmi, Yves; Sasaki, Tsubasa; Deng, Hang; Li, Pei; Steefel, Carl I.; Tournassat, Christophe; Xu, Hao; Babhulgaonkar, Shaswat; Birkholzer, Jens; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Wainwright, Haruko

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

Pyrolysis Modeling of PMMA decomposition studied by TGA

Coker, Eric N.; Scott, Sarah N.; Brown, Alexander B.

Data from four TGA experiments conducted at Sandia National Laboratories was used for determination of a pyrolysis model using a commercial thermokinetics program developed by Netzsch Instruments (Kinetics NEO, version 2.1). The data measured at 1 K/min and the average of three measurements at 50 K/min were used as input into Kinetics NEO. The model was developed using data in the range 373 to 773 K. An initial estimate of the energy of activation (E) and pre-exponential constant (A) were determined from the model-free Friedman approach.

More Details

Compositional and operational impacts on the thermochemical reduction of CO2to CO by iron oxide/yttria-stabilized zirconia

RSC Advances

Coker, Eric N.; Ambrosini, Andrea A.; Miller, James E.

Ferrites have potential for use as active materials in solar-thermochemical cycles because of their versatile redox chemistry. Such cycles utilize solar-thermal energy for the production of hydrogen from water and carbon monoxide from carbon dioxide. Although ferrites offer the potential for deep levels of reduction (e.g., stoichiometric conversion of magnetite to wüstite) and correspondingly large per-cycle product yields, in practice reactions are limited to surface regions made smaller by rapid sintering and agglomeration. Combining ferrites with zirconia or yttria-stabilized zirconia (YSZ) greatly improves the cyclability of the ferrites and enables a move away from powder to monolithic systems. We have studied the behavior of iron oxides composited with YSZ using thermogravimetric analysis under operando conditions. Samples in which the iron was fully dissolved within the YSZ matrix showed greater overall extent of thermochemical redox and higher rate of reaction than samples with equal iron loading but in which the iron was only partially dissolved, with the rest existing as agglomerates of iron oxide within the ceramic matrix. Varying the yttria content of the YSZ revealed a maximum thermochemical capacity (yield per cycle) for 6 mol% Y2O3 in YSZ. The first thermochemical redox cycle performed for each sample resulted in a net mass loss that was proportional to the iron oxide loading in the material and was stoichiometrically consistent with complete reduction of Fe2O3 to Fe3O4 and further partial reduction of the Fe3O4 to FeO. Mass gains upon reaction with CO2 were consistent with re-oxidation of the FeO fraction back to Fe3O4. The Fe dissolved in the YSZ matrix, however, is capable of cycling stoichiometrically between Fe3+ and Fe2+. Varying the re-oxidation temperature between 1000 and 1200 °C highlighted the trade-off between re-oxidation rate and equilibrium limitations. This journal is

More Details

Fast Advective Water Flow through Nanochannels in Clay Interlayers: Implications for Moisture Transport in Soils and Unconventional Oil/Gas Production

ACS Applied Nano Materials

Ho, Tuan A.; Wang, Yifeng; Jove Colon, Carlos F.; Coker, Eric N.

Water flow in nanometer or sub-nanometer hydrophilic channels bears special importance in diverse fields of science and engineering. However, the nature of such water flow remains elusive. Here, we report our molecular-modeling results on water flow in a sub-nanometer clay interlayer between two montmorillonite layers. We show that a fast advective flow can be induced by evaporation at one end of the interlayer channel, that is, a large suction pressure created by evaporation (∼818 MPa) is able to drive the fast water flow through the channel (∼0.88 m/s for a 46 Å-long channel). Scaled up for the pressure gradient to a 2 μm particle, the velocity of water is estimated to be about 95 μm/s, indicating that water can quickly flow through a μm-sized clay particle within seconds. The prediction seems to be confirmed by our thermogravimetric analysis of bentonite hydration and dehydration processes, which indicates that water transport at the early stage of the dehydration is a fast advective process, followed by a slow diffusion process. The possible occurrence of a fast advective water flow in clay interlayers prompts us to reassess water transport in a broad set of natural and engineered systems such as clay swelling/shrinking, moisture transport in soils, water uptake by plants, water imbibition/release in unconventional hydrocarbon reservoirs, and cap rock integrity of supercritical CO2 storage.

More Details

Water transport pathway in clay interlayer upon dehydration [Slides]

Ho, Tuan A.; Jove Colon, Carlos F.; Coker, Eric N.

Smectite (e.g., Montmorillonite): phyllosilicate minerals found in bentonites. Bentonites have been considered as key backfill barrier materials in deep geological nuclear waste repository concepts. Swelling/shrinking of montmorillonite (MMT) occurs with increasing/decreasing relative humidity. Microscopically, how does the hydration/dehydration process occur?

More Details

Water transport pathway in clay interlayer upon dehydration [Slides]

Ho, Tuan A.; Jove Colon, Carlos F.; Coker, Eric N.

Smectite (e.g., Montmorillonite): phyllosilicate minerals found in bentonites. Bentonites have been considered as key backfill barrier materials in deep geological nuclear waste repository concepts. Swelling/shrinking of montmorillonite (MMT) occurs with increasing/decreasing relative humidity. Our research question is, "Microscopically, how does the hydration/dehydration process occur?"

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Weck, Philippe F.; Hadgu, Teklu H.; Kalinina, Elena A.; Lopez, Carlos M.; Sanchez, Amanda C.; Moffat, Harry K.; Rodriguez, Mark A.; Rutqvist, Jonny; Xu, Hao; Tian, Yuan; Deng, Hang; Li, Pei; Hu, Mengsu; Zarzycki, Piotr; Nico, Peter; Borglin, Sharon; Fox, Patricia; Sasaki, Tsubasa; Birkholzer, Jens; Caporuscio, Florie A.; Sauer, Kirsten B.; Rock, Marlena J.; Jerden, James; Thomas, Sara; Lee, Eric S.; Gattu, Vineeth K.; Ebert, William; Zavarin, Mavrik; Wolery, Thomas J.; Deinhart, Amanda; Genetti, Victoria; Shipman, Sam

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heat-generating nuclear waste disposition in deep clay/shale/argillaceous rock. International collaboration activities such as heater tests and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests has as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum vs. discrete) to tackle issues related to flow and transport at various scales of the host-rock and EBS design concept. Consideration of direct disposal of large capacity dual-purpose canisters (DPCs) as part of the back-end SNF waste disposition strategy has generated interest in improving our understanding of the effects of elevated temperatures on the EBS design. This is particularly important for backfilled repository concepts where temperature plays a key role in the EBS behavior and long-term performance. This report describes multiple R&D efforts on disposal in argillaceous geologic media through development and application of coupled THMC process models, experimental studies on clay/metal/cement barrier and host-rock (argillite) material interactions, molecular dynamic (MD) simulations of water transport during (swelling) clay dehydration, first-principles studies of metaschoepite (UO2 corrosion product) stability, and advances in thermodynamic plus surface complexation database development. Drift-scale URL experiments provides key data for testing hydrological-chemical (HC) model involving strong couplings of fluid mixing and barrier material chemical interactions. The THM modeling focuses on heater test experiments in argillite rock and gas migration in bentonite as part of international collaboration activities at underground research laboratories (URLs). In addition, field testing at an URL involves in situ analysis of fault slip behavior and fault permeability. Pore-scale modeling of gas bubble migration is also being investigated within the gas migration modeling effort. Interaction experiments on bentonite samples from heater test under ambient and elevated temperatures permit the evaluation of ion exchange, phase stability, and mineral transformation changes that could impact clay swelling. Advances in the development, testing, and implementation of a spent nuclear fuel (SNF) degradation model coupled with canister corrosion focus on the effects of hydrogen gas generation and its integration with Geologic Disposal Safety Assessment (GDSA). GDSA integration activities includes evaluation of groundwater chemistries in shale formations.

More Details
Results 26–50 of 163
Results 26–50 of 163