Publications

Results 76–100 of 147

Search results

Jump to search filters

An AlN/Al0.85Ga0.15N high electron mobility transistor with a regrown ohmic contact

Device Research Conference - Conference Digest, DRC

Baca, A.G.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Nordquist, Christopher N.; Fortune, Torben R.; Kaplar, Robert K.

The performance and efficiency of power devices depends on both high breakdown voltage and low on-state resistance. For semiconductor devices, the critical electric field (EC) affecting breakdown scales approximately as Eg25 [1], making the wide bandgap semiconductor materials logical candidates for high voltage power electronics devices. In particular, AlGaN alloys approaching AlN with its 6.2 eV bandgap have an estimated EC approaching 5x that of GaN. This factor makes AlN/AlGaN high election mobility transistors (HEMTs) extremely interesting as candidate power electronic devices. Until now, such devices have been hampered, ostensibly due to the difficulty of making Ohmic contacts to AlGaN alloys with high Al composition. With the use of an AlN barrier etch and regrowth procedure for Ohmic contact formation, we are now able to report on an AlN/AlGaN HEMT with 85% Al.

More Details

An AlN/Al0.85Ga0.15N high electron mobility transistor

Applied Physics Letters

Baca, A.G.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Fortune, Torben R.; Kaplar, Robert K.

An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. In conclusion, the room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.

More Details

Ultra-Wide-Bandgap Semiconductors for Generation-After-Next Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Fischer, Arthur J.; Dickerson, Jeramy R.; King, Michael P.; Baca, A.G.; Douglas, Erica A.; Sanchez, Carlos A.; Neely, Jason C.; Flicker, Jack D.; Zutavern, Fred J.; Mauch, Daniel L.; Brocato, Robert W.; Rashkin, Lee; Delhotal, Jarod J.; Fang, Lu F.; Kizilyalli, Isik; Aktas, Ozgur

Abstract not provided.

Spectroscopic investigations of band offsets of MgO|AlxGa1-xN epitaxial heterostructures with varying AlN content

Applied Physics Letters

Paisley, Elizabeth A.; Brumbach, Michael T.; Allerman, A.A.; Atcitty, Stanley A.; Baca, A.G.; Armstrong, Andrew A.; Kaplar, Robert K.; Ihlefeld, Jon I.

Epitaxial (111) MgO films were prepared on (0001) AlxGa1-xN via molecular-beam epitaxy for x=0 to x=0.67. Valence band offsets of MgO to AlxGa1-xN were measured using X-ray photoelectron spectroscopy as 1.65±0.07eV, 1.36±0.05eV, and 1.05±0.09eV for x=0, 0.28, and 0.67, respectively. This yielded conduction band offsets of 2.75eV, 2.39eV, and 1.63eV for x=0, 0.28, and 0.67, respectively. All band offsets measured between MgO and AlxGa1-xN provide a>1eV barrier height to the semiconductor.

More Details

Active Control of Nitride Plasmonic Dispersion in the Far Infrared

Shaner, Eric A.; Dyer, Gregory C.; Seng, William F.; Bethke, Donald T.; Grine, Albert D.; Baca, A.G.; Allerman, A.A.

We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

More Details

Computational analysis of breakdown voltage enhancement for AlGaN/GaN HEMTs through optimal pairing of deep level impurity density and contact design

Solid-State Electronics

Dasgupta, Sandeepan; Baca, A.G.; Cich, Michael J.

Simulations are used to explore the possibility of achieving breakdown voltage scaling using deep acceptors in the buffer for AlGaN/GaN HEMTs. The existence of an optimal range of deep level acceptor density (1017 cm-3), for which the electric field shows the most uniform distribution over the entire Lgd is demonstrated. The peak electric field can be capped off at a certain value, which can be engineered using deep level defects to be less than the critical electric field for GaN or the critical field for punch-through, whichever is lower. Following the saturation in peak electric field, the additional applied voltage spreads across the device access region. Thus, precise control of defect incorporation in the GaN buffer is shown to be a key factor in achieving high breakdown voltage HEMTs with improved unipolar figure of merit. A novel scheme for the source and drain contacts, using shallow mesa etch and partial mesa sidewall oxidation to increase the allowed range of variation in optimal acceptor density to achieve uniform electric field distribution is presented. © 2013 Elsevier Ltd. All rights reserved.

More Details

Sensitivity of on-resistance and threshold voltage to buffer-related deep level defects in AlGaN/GaN high electron mobility transistors

Semiconductor Science and Technology

Armstrong, Andrew A.; Allerman, A.A.; Baca, A.G.; Sanchez, Carlos A.

More Details

Improved manufacturability of AlGaAs/GaAs Pnp heterojunction bipolar transistors

ECS Transactions

Clevenger, J.B.; Patrizi, G.A.; Peterson, T.C.; Cich, M.J.; Baca, A.G.; Klem, John F.; Plut, Thomas A.; Fortune, T.R.; Hightower, M.S.; Torres, D.; Hawkins, Samuel D.; Sullivan, Charles T.

Specially designed Pnp heterojunction bipolar transistors (HBT's) in the AlGaAs/GaAs material system can offer improved radiation response over commercially-available silicon bipolar junction transistors (BJT's). To be a viable alternative to the silicon Pnp BJT, improvements to the manufacturability of the HBT were required. Utilization of a Pd/Ge/Au non-spiking ohmic contact to the base and implementation of a PECVD silicon nitride hard mask for wet etch control were the primary developments that led to a more reliable fabrication process. The implementation of the silicon nitride hard mask and the subsequent process improvements increased the average electrical yield from 43% to 90%. © The Electrochemical Society.

More Details
Results 76–100 of 147
Results 76–100 of 147