Publications

Results 226–232 of 232

Search results

Jump to search filters

Adsorption and capillary condensation in porous media as a function of the chemical potential of water in carbon dioxide

Water Resources Research

Heath, Jason; Bryan, Charles R.; Matteo, Edward N.; Dewers, Thomas D.; Wang, Yifeng

The chemical potential of water may play an important role in adsorption and capillary condensation of water under multiphase conditions at geologic CO2 storage sites. Injection of large volumes of anhydrous CO 2 will result in changing values of the chemical potential of water in the supercritical CO2 phase. We hypothesize that the chemical potential will at first reflect the low concentration of dissolved water in the dry CO2. As formation water dissolves into and is transported by the CO2 phase, the chemical potential of water will increase. We present a pore-scale model of the CO2-water interface or menisci configuration based on the augmented Young-Laplace equation, which combines adsorption on flat surfaces and capillary condensation in wedge-shaped pores as a function of chemical potential of water. The results suggest that, at a given chemical potential for triangular and square pores, liquid water saturation will be less in the CO2-water system under potential CO2 sequestration conditions relative to the air-water vadose zone system. The difference derives from lower surface tension of the CO2-water system and thinner liquid water films, important at pore sizes <1 × 10 -6 m, relative to the air-water system. Water movement due to capillary effects will likely be minimal in reservoir rocks, but still may be important in finer grained, clayey caprocks, where very small pores may retain water and draw water back into the system via adsorption and capillary condensation, if dry-out and then rewetting were to occur. © 2014. American Geophysical Union. All Rights Reserved.

More Details

Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface

Bryan, Charles R.; Dewers, Thomas D.; Heath, Jason; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen M.

In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for monitoring ganglion formation in the subsurface.

More Details
Results 226–232 of 232
Results 226–232 of 232