Publications

Results 1–100 of 152

Search results

Jump to search filters

High-Entropy Metal-Organic Frameworks (HEMOFs): A New Frontier in Materials Design for CO2 Utilization

Advanced Materials

Gallis, Dorina F.S.; Sikma, R.E.; Reyes, Raphael A.; Wygant, Melissa L.; Kotula, Paul G.; Vogel, Dayton J.

High-entropy materials (HEMs) emerged as promising candidates for a diverse array of chemical transformations, including CO2 utilization. However, traditional HEMs catalysts are nonporous, limiting their activity to surface sites. Designing HEMs with intrinsic porosity can open the door toward enhanced reactivity while maintaining the many benefits of high configurational entropy. Here, a synergistic experimental, analytical, and theoretical approach to design the first high-entropy metal-organic frameworks (HEMOFs) derived from polynuclear metal clusters is implemented, a novel class of porous HEMs that is highly active for CO2 fixation under mild conditions and short reaction times, outperforming existing heterogeneous catalysts. HEMOFs with up to 15 distinct metals are synthesized (the highest number of metals ever incorporated into a single MOF) and, for the first time, homogenous metal mixing within individual clusters is directly observed via high-resolution scanning transmission electron microscopy. Importantly, density functional theory studies provide unprecedented insight into the electronic structures of HEMOFs, demonstrating that the density of states in heterometallic clusters is highly sensitive to metal composition. This work dramatically advances HEMOF materials design, paving the way for further exploration of HEMs and offers new avenues for the development of multifunctional materials with tailored properties for a wide range of applications.

More Details

Using Active Learning to Rapidly Develop Machine Learned Diffusion Coefficients of CO2 Conversion Reagents in Metal-Organic Frameworks

Journal of Physical Chemistry C

Leverant, Calen J.; Cooper, John; Gallis, Dorina F.S.; Harvey, Jacob A.

Here, we used a combined molecular dynamics/active learning (AL) approach to create machine learning models that can predict the diffusion coefficient of epichlorohydrin and chloropropene carbonate, the reactant and product of a common CO2 cycloaddition reaction, in metal-organic frameworks (MOFs). Nanoporous MOFs are effective catalysts for the cycloaddition of CO2 to epoxides. The diffusion rates within nanoporous catalysts can control the rate of reaction as the reactants and products must diffuse to the active sites within the MOF and then out of the nanoporous material for reusability. However, the diffusion process is routinely ignored when searching for new materials in catalytic applications. We verified improvement during the AL process by consistently tracking metrics on the same groups of MOFs to ensure consistency. Metal identity was found to have little impact on diffusion rates, while structural features like pore limiting diameter act as a threshold where a minimum value is needed for high diffusion rates. We identified the MOFs with the highest epichlorohydrin and chloropropene carbonate diffusion coefficients which can be used for further studies of reaction energetics.

More Details

Tuning the pore chemistry of Zr-MOFs for efficient metal ion capture from complex streams

Chemical Communications

Gallis, Dorina F.S.; Sikma, R.E.; Song, Boyoung; Deneff, Jacob I.; Smith, Jacob; Sanchez, Kadie; Reyes, Raphael A.; Fritzsching, Keith; Ilgen, Anastasia G.

Metal-organic frameworks (MOFs) have shown promise for adsorptive separations of metal ions. Herein, MOFs based on highly stable Zr(iv) building units were systematically functionalized with targeted metal binding groups. Through competitive adsorption studies, it was shown that the selectivity for different metal ions was directly tunable through functional group chemistry.

More Details

Quest for Multifunctionality: Current Progress in the Characterization of Heterometallic Metal-Organic Frameworks

Journal of the American Chemical Society

Gallis, Dorina F.S.; Sikma, R.E.; Butler, Kimberly S.; Harvey, Jacob A.; Vogel, Dayton J.

Metal-organic frameworks (MOFs) are a class of porous, crystalline materials that have been systematically developed for a broad range of applications. Incorporation of two or more metals into a single crystalline phase to generate heterometallic MOFs has been shown to lead to synergistic effects, in which the whole is oftentimes greater than the sum of its parts. Because geometric proximity is typically required for metals to function cooperatively, deciphering and controlling metal distributions in heterometallic MOFs is crucial to establish structure-function relationships. However, determination of short- and long-range metal distributions is nontrivial and requires the use of specialized characterization techniques. Advancements in the characterization of metal distributions and interactions at these length scales is key to rapid advancement and rational design of functional heterometallic MOFs. This perspective summarizes the state-of-the-art in the characterization of heterometallic MOFs, with a focus on techniques that allow metal distributions to be better understood. Using complementary analyses, in conjunction with computational methods, is critical as this field moves toward increasingly complex, multifunctional systems.

More Details

Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs

Nature Communications

Gallis, Dorina F.S.; Deneff, Jacob I.; Rohwer, Lauren E.S.; Butler, Kimberly S.; Kaehr, Bryan J.; Vogel, Dayton J.; Luk, Ting S.; Cruz-Cabrera, Alvaro A.; Reyes, Raphael A.; Martin, James E.

Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform’s relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.

More Details

Using small building blocks to assemble ultra-complex, multifaceted metal-organic frameworks with zeolitic, mesoporous subnetwork

Chem

Gallis, Dorina F.S.; Li, Jiantang; Guillerm, Vincent; Melliti, Taslim; Luebke, Ryan; Eubank, Jarrod F.; Bhatt, Prashant M.; Jiang, Hao; Bonneau, Mickaele; Belmabkhout, Youssef; Huang, Zhiyuan; Shkurenko, Aleksander; Wojtas, Lukasz; Keeffe, Mohamed'; Eddaoudi, Mohamed

The assembly of ultra-complex structures from simple building units remains a long-term challenge in chemistry. Using small molecular building blocks (MBBs) in a mixed-ligand approach permitted the assembly of unprecedented metal-organic frameworks (MOFs), M-kum-MOF-1 (M = Y, Tb), exhibiting extra-large mesoporous cavities with small access windows. The ultra-complex cage of M-kum-MOF-1 consists of 240 vertices bridged by 432 edges, leading to a 194 faces-containing tile. This tile exhibits more faces than in any periodic structures (zeolites, MOFs, metal-organic polyhedra [MOPs], etc.) known to date. M-kum-MOF-1 not only possess zeolitic features (anionic framework), but they also contain an underlying wse zeolitic topology, which is observed for the first time.

More Details

Exploitation of Defects in High Entropy Ceramic Barrier Materials

Harvey, Jacob A.; Lowry, Daniel R.; Riley, Christopher R.; Mccoy, Chad A.; Ulmen, Ben; Biedermann, Laura B.; Bishop, Sean R.; Gallis, Dorina F.S.

A critical mission need exists to develop new materials that can withstand extreme environments and multiple sequential threats. High entropy materials, those containing 5 or more metals, exhibit many exciting properties which would potentially be useful in such situations. However, a particularly hard challenge in developing new high entropy materials is determining a priori which compositions will form the desired single phase material. The project outlined here combined several modeling and experimental techniques to explore several structure-property-relationships of high entropy ceramics in an effort to better understand the connection between their compositional components, their observed properties, and stability. We have developed novel machine learning algorithms which rapidly predict stable high entropy ceramic compositions, identified the stability interplay between configurational entropy and cation defects, and tested the mechanical stability of high entropy oxides using the unique capabilities at the Dynamic Compression Sector facility and the Saturn accelerator.

More Details

Improved quantum yield in geometrically constrained tetraphenylethylene-based metal-organic frameworks

CrystEngComm

Gallis, Dorina F.S.; Deneff, Jacob I.; Reyes, Raphael A.; Rodriguez, Mark A.; Valdez, Nichole R.; Rohwer, Lauren E.S.; Stawiasz, Katherine J.; Woods, Toby J.; Lawal, Abdul; Moore, Jeffrey S.

Herein, we report the synthesis of a novel, tetraphenylethylene-based ligand for metal-organic frameworks (MOFs). Incorporation of this ligand into a Zn- or Eu-based MOF increased the quantum yield (QY) by almost 2.5× compared to the linker alone. Furthermore, the choice of guest solvent impacted the QY and solvatochromatic response. These shifts are consistent with solvent dielectric constant as well as molecular polarizability.

More Details

Trends in Siting of Metals in Heterometallic Nd-Yb Metal-Organic Frameworks and Molecular Crystals

ACS Applied Materials and Interfaces

Ibikunle, Ifayoyinsola A.; Yang, Yuhan; Gallis, Dorina F.S.; Valdez, Nichole R.; Rodriguez, Mark A.; Harvey, Jacob A.; Sholl, David S.

More Details

Impact of Gold Thickness on Interfacial Evolution and Subsequent Embrittlement of Tin–Lead Solder Joints

Journal of Electronic Materials

Wheeling, Rebecca; Vianco, Paul; Williams, Shelley M.; Jauregui, Luis; Gallis, Dorina F.S.

Although gold remains a preferred surface finish for components used in high-reliability electronics, rapid developments in this area have left a gap in the fundamental understanding of solder joint gold (Au) embrittlement. Furthermore, as electronic designs scale down in size, the effect of Au content is not well understood on increasingly smaller solder interconnections. As a result, previous findings may have limited applicability. The current study focused on addressing these gaps by investigating the interfacial microstructure that evolves in 63Sn-37Pb solder joints as a function of Au layer thickness. Those findings were correlated to the mechanical performance of the solder joints. Increasing the initial Au concentration decreased the mechanical strength of a joint, but only to a limited degree. Kirkendall voids were the primary contributor to low-strength joints, while brittle fracture within the intermetallic compounds (IMC) layers is less of a factor. The Au embrittlement mechanism appears to be self-limiting, but only once mechanical integrity is degraded. Sufficient void evolution prevents continued diffusion from the remaining Au.

More Details

Dramatic Enhancement of Rare-Earth Metal-Organic Framework Stability Via Metal Cluster Fluorination

JACS Au

Christian, Matthew S.; Fritzsching, Keith; Harvey, Jacob A.; Gallis, Dorina F.S.; Nenoff, Tina M.; Rimsza, Jessica

Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

More Details

Crystal Prediction and Design of Tunable Light Emission in BTB-Based Metal-Organic Frameworks

Advanced Optical Materials

Rimsza, Jessica; Henkelis, Susan; Rohwer, Lauren E.S.; Gallis, Dorina F.S.; Nenoff, Tina M.

Metal-organic frameworks (MOFs) have recently been shown to exhibit unique mechanisms of luminescence based on charge transfer between structural units in the framework. These MOFs have the potential to be structural tuned for targeted emission with little or no metal participation. A computationally led, material design and synthesis methodology is presented here that elucidates the mechanisms of light emission in interpenetrated structures comprised of metal centers (M = In, Ga, InGa, InEu) and BTB (1,3,5-Tris(4-carboxyphenyl)benzene) linkers, forming unique luminescent M-BTB MOF frameworks. Gas phase and periodic electronic structure calculations indicate that the intensity of the emission and the wavelength are overwhelmingly controlled by a combination of the number of interacting stacked linkers and their interatomic spacings, respectively. In the MOF, the ionic radii of the metal centers primarily control the expansion or shrinkage of the linker stacking distances. Experimentally, multiple M-BTB-based MOFs are synthesized and their photoluminescence was tested. Experiments validated the modeling by confirming that shifts in the crystal structure result in variations in light emission. Through this material design method, the mechanisms of tuning luminescence properties in interpenetrated M-BTB MOFs have been identified and applied to the design of MOFs with specific wavelength emission based on their structure.

More Details

Programmable Photoluminescence via Intrinsic and DNA-Fluorophore Association in a Mixed Cluster Heterometallic MOF

ACS Applied Materials and Interfaces

Gallis, Dorina F.S.; Butler, Kimberly S.; Pearce, Charles J.; Valdez, Nichole R.; Rodriguez, Mark A.

A rapid and facile design strategy to create a highly complex optical tag with programmable, multimodal photoluminescent properties is described. This was achieved via intrinsic and DNA-fluorophore hidden signatures. As a first covert feature of the tag, an intricate novel heterometallic near-infrared (NIR)-emitting mesoporous metal-organic framework (MOF) was designed and synthesized. The material is constructed from two chemically distinct, homometallic hexanuclear clusters based on Nd and Yb. Uniquely, the Nd-based cluster is observed here for the first time in a MOF and consists of two staggered Nd μ3-oxo trimers. To generate controlled, multimodal, and tailorable emission with difficult to counterfeit features, the NIR-emissive MOF was post-synthetically modified via a fluorescent DNA oligo labeling design strategy. The surface attachment of several distinct fluorophores, including the simultaneous attachment of up to three distinct fluorescently labeled oligos was achieved, with excitation and emission properties across the visible spectrum (480-800 nm). The DNA inclusion as a secondary covert element in the tag was demonstrated via the detection of SYBR Gold dye association. Importantly, the approach implemented here serves as a rapid and tailorable way to encrypt distinct information in a facile and modular fashion and provides an innovative technology in the quest toward complex optical tags.

More Details

Covert MOF-Based Photoluminescent Tags via Tunable Linker Energetics

ACS Applied Materials and Interfaces

Deneff, Jacob I.; Rohwer, Lauren E.S.; Valdez, Nichole R.; Rodriguez, Mark A.; Luk, Ting S.; Butler, Kimberly S.; Gallis, Dorina F.S.

Optical anticounterfeiting tags utilize the photoluminescent properties of materials to encode unique patterns, enabling identification and validation of important items and assets. These tags must combine optical complexity with ease of production and authentication to both prevent counterfeiting and to remain practical for widespread use. Metal-organic frameworks (MOFs) based on polynuclear, rare earth clusters are ideal materials platforms for this purpose, combining fine control over structure and composition, with tunable, complex energy transfer mechanisms via both linker and metal components. Here we report the design and synthesis of a set of heterometallic MOFs based on combinations of Eu, Nd, and Yb with the tetratopic linker 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene. The energetics of this linker facilitate the intentional concealment of the visible emissions from Eu while retaining the infrared emissions of Nd and Yb, creating an optical tag with multiple covert elements. Unique to the materials system reported herein, we document the occurrence of a previously not observed 11-metal cluster correlated with the presence of Yb in the MOFs, coexisting with a commonly encountered 9-metal cluster. We demonstrate the utility of these materials as intricate optical tags with both rapid and in-depth screening techniques, utilizing orthogonal identifiers across composition, emission spectra, and emission decay dynamics. This work highlights the important effect of linker selection in controlling the resulting photoluminescent properties in MOFs and opens an avenue for the targeted design of highly complex, multifunctional optical tags.

More Details

Encoding Multilayer Complexity in Anti-Counterfeiting Heterometallic MOF-Based Optical Tags

Angewandte Chemie - International Edition

Deneff, Jacob I.; Butler, Kimberly S.; Rohwer, Lauren E.S.; Pearce, Charles J.; Valdez, Nichole R.; Rodriguez, Mark A.; Luk, Ting S.; Gallis, Dorina F.S.

Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal–organic frameworks based on highly connected nonanuclear clusters. To impart both intricacy and security, a synergistic approach was implemented resulting in both overt (visible) and covert (near-infrared, NIR) properties, with concomitant multi-emissive spectra and tunable luminescence lifetimes. Tag authentication is validated with a variety of orthogonal detection methodologies. Importantly, the effect induced by subtle compositional changes on intermetallic energy transfer, and thus on the resulting photophysical properties, is demonstrated. This strategy can be widely implemented to create a large library of highly complex, difficult-to-counterfeit optical tags.

More Details

Antibody Targeted Metal-Organic Frameworks for Bioimaging Applications

ACS Applied Materials and Interfaces

Butler, Kimberly S.; Pearce, Charles J.; Nail, Elizabeth; Vincent, Grace A.; Gallis, Dorina F.S.

We report on the availability and chemical utility of primary amines within metal-organic frameworks (MOFs) for cell targeting. Primary amine groups represent one of the most versatile chemical moieties for conjugation to biologically relevant molecules, including antibodies and enzymes. Specifically, we used two different chemical conjugations schemes, utilizing the amino functionality on the organic linker: first, carbodiimide chemistry was used to link the primary amine to available carboxyl groups on the protein neutravidin; second, sulfhydryl cross-linking chemistry was used via Traut's reagent scheme. Importantly, this is the first report that documents this methodology implemented with MOF systems. Finally, the ability of the EpCAM antibody targeted MOFs to bind to a human epithelial cell line (A549), a common target for imaging studies, was confirmed with confocal microscopy.

More Details

NOx Adsorption and Optical Detection in Rare Earth Metal–Organic Frameworks

ACS Applied Materials and Interfaces

Nenoff, Tina M.; Vogel, Dayton J.; Rimsza, Jessica; Gallis, Dorina F.S.; Garibay, Grace A.

Acid gases (e.g., NOx and SOx), commonly found in complex chemical and petrochemical streams, require material development for their selective adsorption and removal. Here, we report the NOx adsorption properties in a family of rare earth (RE) metal–organic frameworks (MOFs) materials. Fundamental understanding of the structure–property relationship of NOx adsorption in the RE-DOBDC materials platform was sought via a combined experimental and molecular modeling study. No structural change was noted following humid NOx exposure. Density functional theory (DFT) simulations indicated that H2O has a stronger affinity to bind with the metal center than NO2, while NO2 preferentially binds with the DOBDC ligands. Further modeling results indicate no change in binding energy across the RE elements investigated. Also, stabilization of the NO2 and H2O molecules following adsorption was noted, predicted to be due to hydrogen bonding between the framework ligands and the molecules and nanoconfinement within the MOF structure. This interaction also caused distinct changes in emission spectra, identified experimentally. As a result, calculations indicated that this is due to the adsorption of NO2 molecules onto the DOBDC ligand altering the electronic transitions and the resulting photoluminescent properties, a feature that has potential applications in future sensing technologies.

More Details

Spectroscopically Resolved Binding Sites for the Adsorption of Sarin Gas in a Metal-Organic Framework: Insights beyond Lewis Acidity

Journal of Physical Chemistry Letters

Harvey, Jacob A.; Mcentee, Monica L.; Garibay, Sergio J.; Durke, Erin M.; Decoste, Jared B.; Greathouse, Jeffery A.; Gallis, Dorina F.S.

Here we report molecular level details regarding the adsorption of sarin (GB) gas in a prototypical zirconium-based metal-organic framework (MOF, UiO-66). By combining predictive modeling and experimental spectroscopic techniques, we unambiguously identify several unique bindings sites within the MOF, using the P=O stretch frequency of GB as a probe. Remarkable agreement between predicted and experimental IR spectrum is demonstrated. As previously hypothesized, the undercoordinated Lewis acid metal site is the most favorable binding site. Yet multiple sites participate in the adsorption process; specifically, the Zr-chelated hydroxyl groups form hydrogen bonds with the GB molecule, and GB weakly interacts with fully coordinated metals. Importantly, this work highlights that subtle orientational effects of bound GB are observable via shifts in characteristic vibrational modes; this finding has large implications for degradation rates and opens a new route for future materials design.

More Details

Structure and electronic properties of rare earth DOBDC metal-organic-frameworks

Physical Chemistry Chemical Physics

Vogel, Dayton J.; Gallis, Dorina F.S.; Nenoff, Tina M.; Rimsza, Jessica

Here, we apply density functional theory (DFT) to investigate rare-earth metal organic frameworks (RE-MOFs), RE12(μ3-OH)16(C8O6H4)8(C8O6H5)4 (RE = Y, Eu, Tb, Yb), and characterize the level of theory needed to accurately predict structural and electronic properties in MOF materials with 4f-electrons. A two-step calculation approach of geometry optimization with spin-restricted DFT and large core potential (LCPs), and detailed electronic structures with spin-unrestricted DFT with a full valence potential + Hubbard U correction is investigated. Spin-restricted DFT with LCPs resulted in good agreement between experimental lattice parameters and optimized geometries, while a full valence potential is necessary for accurate representation of the electronic structure. The electronic structure of Eu-DOBDC MOF indicated a strong dependence on the treatment of highly localized 4f-electrons and spin polarization, as well as variation within a range of Hubbard corrections (U = 1-9 eV). For Hubbard corrected spin-unrestricted calculations, a U value of 1-4 eV maintains the non-metallic character of the band gap with slight deviations in f-orbital energetics. When compared with experimentally reported results, the importance of the full valence calculation and the Hubbard correction in correctly predicting the electronic structure is highlighted.

More Details

Insights into the solvent-Assisted degradation of organophosphorus compounds by a Zr-based metal-organic framework

Dalton Transactions

Harvey, Jacob A.; Pearce, Charles J.; Hall, Morgan G.; Bruni, Eric J.; Decoste, Jared B.; Gallis, Dorina F.S.

The degradation of a chemical warfare agent simulant using a catalytically active Zr-based metal-organic framework (MOF) as a function of different solvent systems was investigated. Complementary molecular modelling studies indicate that the differences in the degradation rates are related to the increasing size in the nucleophile, which hinders the rotation of the product molecule during degradation. Methanol was identified as an appropriate solvent for non-Aqueous degradation applications and demonstrated to support the MOF-based destruction of both sarin and soman.

More Details

Defect and Linker Effects on the Binding of Organophosphorous Compounds in UiO-66 and Rare-Earth MOFs

Journal of Physical Chemistry C

Greathouse, Jeffery A.; Gallis, Dorina F.S.

The adsorption of chemical warfare agents and their simulants by Zr (UiO-66) and rare-earth (Y, UiO-66-DOBDC analog)-based metal-organic frameworks (MOFs) is explored here using density functional theory. In particular, we investigate the role of linker functional group (OH, H) and metal atom identity on the binding energies of organophosphorous compounds. Commonly used cluster approximations for MOF secondary building units and various optimization constraints are compared with three-dimensional periodic results. An in-depth scan of potential binding sites and orientations reveals little effect due to metal identity, whereas the effect of linker functionalization depends on the substrate. This finding strongly suggests that full linkers and functional groups should be included in cluster models. Importantly, defect sites show considerably improved binding of organophosphorous compounds as compared to ideal clusters. Favorable binding is also demonstrated at two additional adsorption sites, ZrOH and μ3-OH, that likely play a role in the initial adsorption process. The results presented here portray the importance of including full three-dimensional pore structures in the adsorption process of organophosphorous compounds in MOFs; a critical first step in the degradation of these harmful chemicals.

More Details

How Useful Are Common Simulants of Chemical Warfare Agents at Predicting Adsorption Behavior?

Journal of Physical Chemistry C

Agrawal, Mayank; Gallis, Dorina F.S.; Greathouse, Jeffery A.; Sholl, David S.

Nanoporous materials such as metal-organic frameworks (MOFs) have attractive properties for selective capture of chemical warfare agents (CWAs). For obvious reasons, most research on adsorption of CWAs is performed with simulant molecules rather than real agents. This paper examines how effectively common CWA simulants mimic the adsorption properties of sarin and soman. To this end, we perform molecular simulations in the dilute adsorption limit for four simulants [dimethyl methylphosphonate (DMMP), diethyl chlorophosphate (DCP), diisopropyl fluorophosphate, and dimethyl p-nitrophenyl phosphate (DMNP)] and sarin and soman in a set of 2969 MOFs with experimentally known crystal structures. To establish the robustness of the conclusions with respect to the force field used in these simulations, each system was examined with two independent force fields, a "generic" force field and a density functional theory (DFT)-derived force field we established based on extensive dispersion-corrected DFT calculations of adsorption in the well-known MOF UiO-66. Our results show that when judging the performance of adsorbents using the heat of adsorption, DCP and DMMP are the best simulants for the adsorption of sarin, while DMNP is the best simulant for soman. The adsorption properties of DCP or DMMP show a strong correlation with sarin over a range of MOFs, but the correlation between DMNP and soman is considerably weaker. Comparisons of results with both force fields indicate that our main conclusions are robust with respect to the force field used to define adsorbate-MOF interactions.

More Details

Enhancing Van der Waals Interactions of Functionalized UiO-66 with Non-polar Adsorbates: The Unique Effect of para Hydroxyl Groups

Chemistry - A European Journal

Tovar, Trenton M.; Iordanov, Ivan; Gallis, Dorina F.S.; Decoste, Jared B.

UiO-66 is a highly stable metal-organic framework (MOF) that has garnered interest for many adsorption applications. For small, nonpolar adsorbates, physisorption is dominated by weak Van der Waals interactions limiting the adsorption capacity. A common strategy to enhance the adsorption properties of isoreticular MOFs, such as UiO-66, is to add functional groups to the organic linker. Low and high pressure O2 isotherms were measured on UiO-66 MOFs functionalized with electron donating and withdrawing groups. It was found that the electron donating effects of -NH2, -OH, and -OCF3 groups enhance the uptake of O2. Interestingly, a significant enhancement in both the binding energy and adsorption capacity of O2 was observed for UiO-66-(OH)2-p, which has two -OH groups para from one another. Density functional theory (DFT) simulations were used to calculate the binding energy of oxygen to each MOF, which trended with the adsorption capacity and agreed well with the heats of adsorption calculated from the Toth model fit to multi-temperature isotherms. DFT simulations also determined the highest energy binding site to be on top of the electron π-cloud of the aromatic ring of the ligand, with a direct trend of the binding energy with low pressure adsorption capacity. Uniquely, DFT found that oxygen molecules adsorbed to UiO-66-(OH)2-p prefer to align parallel to the -OH groups on the aromatic ring. Similar effects for the electron donation of the functional groups were observed for the low pressure adsorption of N2, CH4, and CO2.

More Details

Multifunctional, Tunable Metal-Organic Framework Materials Platform for Bioimaging Applications

ACS Applied Materials and Interfaces

Gallis, Dorina F.S.; Rohwer, Lauren E.S.; Rodriguez, Mark A.; Dailey, Meghan; Butler, Kimberly S.; Luk, Ting S.; Timlin, Jerilyn A.; Chapman, Karena W.

Herein, we describe a novel multifunctional metal-organic framework (MOF) materials platform that displays both porosity and tunable emission properties as a function of the metal identity (Eu, Nd, and tuned compositions of Nd/Yb). Their emission collectively spans the deep red to near-infrared (NIR) spectral region (∼614-1350 nm), which is highly relevant for in vivo bioimaging. These new materials meet important prerequisites as relevant to biological processes: they are minimally toxic to living cells and retain structural integrity in water and phosphate-buffered saline. To assess their viability as optical bioimaging agents, we successfully synthesized the nanoscale Eu analog as a proof-of-concept system in this series. In vitro studies show that it is cell-permeable in individual RAW 264.7 mouse macrophage and HeLa human cervical cancer tissue culture cells. The efficient discrimination between the Eu emission and cell autofluorescence was achieved with hyperspectral confocal fluorescence microscopy, used here for the first time to characterize MOF materials. Importantly, this is the first report that documents the long-term conservation of the intrinsic emission in live cells of a fluorophore-based MOF to date (up to 48 h). This finding, in conjunction with the materials' very low toxicity, validates the biocompatibility in these systems and qualifies them as promising for use in long-term tracking and biodistribution studies.

More Details

Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries

RSC Advances

Chavez, James S.; Harrison, Katharine L.; Gallis, Dorina F.S.

Here we report for the first time the feasibility of using metal-organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode-electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing to its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.

More Details

4,4'-([4,4'-Bipyridine]-1,1'-diium-1,1'-diyl)dibenzoate dihydrate

IUCrData

Rodriguez, Mark A.; Gallis, Dorina F.S.; Chavez, James S.; Klivansky, Liana M.; Liu, Yi

We report here the synthesis of a neutral viologen derivative, C24H16N2O4·2H2O. The non-solvent portion of the structure (Z-Lig) is a zwitterion, consisting of two positively charged pyridinium cations and two negatively charged carboxylate anions. The carboxylate group is almost coplanar [dihedral angle = 2.04 (11)°] with the benzene ring, whereas the dihedral angle between pyridine and benzene rings is 46.28 (5)°. TheZ-Lig molecule is positioned on a center of inversion (Fig. 1). The presence of the twofold axis perpendicular to thec-glide plane in space groupC2/c generates a screw-axis parallel to thebaxis that is shifted from the origin by 1/4 in theaandcdirections. This screw-axis replicates the molecule (and solvent water molecules) through space. TheZ-Lig molecule links to adjacent moleculesviaO—H...O hydrogen bonds involving solvent water molecules as well as intermolecular C—H...O interactions. There are also π–π interactions between benzene rings on adjacent molecules.

More Details

Selective O2 sorption at ambient temperatures via node distortions in Sc-MIL-100

Chemistry of Materials

Nenoff, Tina M.; Gallis, Dorina F.S.; Parkes, Marie V.; Greathouse, Jeffery A.; Rodriguez, Mark A.; Chapman, Karena W.

In this study, oxygen selectivity in metal-organic frameworks (MOFs) at exceptionally high temperatures originally predicted by Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) modeling is now confirmed by synthesis, sorption metal center access, in particular Sc and Fe. Based on DFT M-O2 binding energies, we chose the large pored MIL-100 framework for metal center access, in particular Sc and Fe. Both resulted in preferential O2 and N2 gas uptake at temperatures ranging from 77 K to ambient temperatures (258 K, 298 K and 313 K).

More Details

Ab initio molecular dynamics determination of competitive O2 vs. N2 adsorption at open metal sites of M2 (dobdc)

Physical Chemistry Chemical Physics. PCCP

Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David; Gallis, Dorina F.S.; Nenoff, Tina M.

The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.

More Details

Nanoporous-carbon as a potential host material for reversible Mg ion intercalation

Journal of the Electrochemical Society

Siegal, Michael P.; Yelton, W.G.; Perdue, Brian R.; Gallis, Dorina F.S.; Schwarz, Haiqing L.

We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignardbased electrolyte. NPC mass density is controlled during growth, ranging from 0.06-1.3 g/cm3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m2/g as mass density decreases from 1.3 to 0.26 g/cm3, however, the surface area falls off dramatically at lowermass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ∼0.5 g/cm3 and BET surface area ∼1500 m2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.

More Details
Results 1–100 of 152
Results 1–100 of 152