Hydrogen energy storage can be used to achieve goals of national energy security, renewable energy integration, and grid resilience. Adapting underground natural gas storage facility (UNGSF) infrastructure for underground hydrogen storage (UHS) is one method of storing large quantities of hydrogen that has already largely been proven to work for natural gas. There are currently some underground salt caverns in the United States that are being used for hydrogen storage by commercial entities, but it is still a fairly new concept in that it has not been widely deployed nor has it been done with other geologic formations like depleted hydrocarbon reservoirs. Assessments of UHS systems can help identify and evaluate risks to people both working within the facility and residing nearby. This report provides example risk assessment methodologies and analyses for generic wellhead and processing facility configurations, specifically in the context of the risks of unintentional hydrogen releases into the air. Assessment of the hydrogen containment in the subsurface is also critically important for a safety assessment for a UHS facility, but those geomechanical assessments are not included in this report.
Quantitative risk assessment (QRA) is highly dependent on data, leading to more robust models as new and updated data is acquired. The Hydrogen Plus Other Alternative Fuels Risk Assessment (HyRAM+) QRA capabilities include calculations of individual risk from leaks in a gaseous hydrogen facility due to the potential effects of jet fires and explosions. Leak frequencies are acquired through statistical analysis of published data from a variety of sources and industries. The filter leak frequencies in previous versions of the HyRAM+ software are substantially greater than the leak frequencies of other components, leading to QRA results for gaseous hydrogen in which filters consistently dominate the overall risk. Data that were previously used to derive the filter leak frequencies were reevaluated for applicability and additional data points were added to update the filter leak frequencies. The new frequencies are more comparable to leak frequencies for other components.
Hydrogen continues to show promise as a viable contributor to achieving energy storage goals such as energy security and decarbonization in the United States. However, many new and expanded hydrogen use applications will require identifying methods of larger-scale storage than the solutions that currently exist for smaller storage applications. One possibility is to store large quantities of gaseous hydrogen below ground level. Underground storage of other fuels such as natural gas is already currently utilized, so much of the infrastructure and basic technologies can be used as a basis for underground hydrogen storage (UHS). A few commercial UHS facilities currently exist in the United States, including salt caverns owned and operated by Air Liquide, Linde, and Conoco Philips, but UHS is still a relatively new concept that has not been widely deployed. It is necessary to understand the safety risks and hazards associated with UHS before its use can be expanded and accepted more broadly. Many of these risks are addressed through regulations, codes, and standards (RCS) issued by governing bodies and organizations with expertise in certain hazards. This report is a review of RCS documents relevant to UHS, with a particular lens on potential technical gaps in existing guidance. These gaps may be specific to the physical properties of hydrogen or due to the different technologies relevant for hydrogen vs. natural gas storage. This is meant to be a high-level review to identify relevant documents and potential gaps. Formally addressing the individual gaps identified here within the codes and standards themselves would involve a more intensive analysis and differ based on the code or standard revision processes of the various publishing organizations. Therefore, presenting specific recommendations for revising the verbiage of the documents for UHS applications is left for future work and other publications.
The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, natural gas, and autogas systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying leak sizes and rates, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 5.1. The most significant changes for HyRAM+ version 5.1 from HyRAM+ version 5.0 are updated default leak frequency values for propane, new default component counts for different fuel types, and an improved fuel specification view in the graphical user interface.
Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+) is a software toolkit that provides a basis for quantitative risk assessment and consequence modeling for alternative fuels infrastructure and transportation systems. HyRAM+ integrates validated, analytical models of alternative fuel behavior, statistics, and a standardized quantitative risk assessment approach to generate useful, repeatable results for the safety analysis of various alternative fuel systems. This document demonstrates how to use HyRAM+ to analyze an example system, providing tutorials of HyRAM+ features with respect to system safety analysis and risk assessment.
Liquefied petroleum gas (LPG) is used in heating, cooking, and as a vehicle fuel (called autogas). A safety risk assessment may be needed to assess potential hazard scenarios and inform the regulations, codes, and standards that apply to LPG facilities, such as autogas refueling facilities. The frequency of unintended releases in an LPG system is an important aspect of a system quantitative risk assessment. This report documents estimation of leakage frequencies for individual components of LPG systems. These frequencies are described using uncertainty distributions obtained with Bayesian statistical methods, generic data, and LPG data which were publicly available. There was a lack of LPG data in the literature, so frequencies for most components were developed with generic data and should be used cautiously; without additional information about component leak frequencies in LPG systems, it is not known whether these generic frequencies may be conservative or non-conservative.
We investigate the potential of liquid hydrogen storage (LH2) on-board Class-8 heavy duty trucks to resolve many of the range, weight, volume, refueling time and cost issues associated with 350 or 700-bar compressed H2 storage in Type-3 or Type-4 composite tanks. We present and discuss conceptual storage system configurations capable of supplying H2 to fuel cells at 5-bar with or without on-board LH2 pumps. Structural aspects of storing LH2 in double walled, vacuum insulated, and low-pressure Type-1 tanks are investigated. Structural materials and insulation methods are discussed for service at cryogenic temperatures and mitigation of heat leak to prevent LH2 boil-off. Failure modes of the liner and shell are identified and analyzed using the regulatory codes and detailed finite element (FE) methods. The conceptual systems are subjected to a failure modes and effects analysis (FMEA) and a safety, codes, and standards (SCS) review to rank failures and identify safety gaps. The results indicate that the conceptual systems can reach 19.6% useable gravimetric capacity, 40.9 g-H2/L useable volumetric capacity and $174–183/kg-H2 cost (2016 USD) when manufactured 100,000 systems annually.
The previous separation distances in the National Fire Protection Association (NFPA) Hydrogen Technologies Code (NFPA 2, 2020 Edition) for bulk liquid hydrogen systems lack a well-documented basis and can be onerous. This report describes the technical justifications for revisions of the bulk liquid hydrogen storage setback distances in NFPA 2, 2023 Edition. Distances are calculated based on a leak area that is 5% of the nominal pipe flow area. Models from the open source HyRAM+ toolkit are used to justify the leak size as well as calculate consequence-based separation distances from that leak size. Validation and verification of the numerical models is provided, as well as justification for the harm criteria used for the determination of the setback distances for each exposure type. This report also reviews mitigations that could result in setback distance reduction. The resulting updates to the liquid hydrogen separation distances are well-documented, retrievable, repeatable, revisable, independently verified, and use experimental results to verify the models.
The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, natural gas, and autogas systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying leak sizes and rates, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 5.0. The most significant change for HyRAM+ version 5.0 from HyRAM+ version 4.1 is the ability to model blends of different fuels. HyRAM+ was previously only suitable for use with hydrogen, methane, or propane, with users having the ability to use methane as a proxy for natural gas and propane as a proxy for autogas/liquefied petroleum gas. In version 5.0, real natural gas or autogas compositions can be modeled as the fuel, or even blends of natural gas with hydrogen. These blends can be used in the standalone physics models, but not yet in the quantitative risk assessment mode of HyRAM+.
The frequency of unintended releases in a compressed natural gas system is an important aspect of the system quantitative risk assessment. The frequencies for possible release scenarios, along with engineering models, are utilized to quantify the risks for compressed natural gas facilities. This report documents component leakage frequencies representative of compressed natural gas components that were estimated as a function of the normalized leak size. A Bayesian statistical method was used which results in leak frequency distributions for each component which represent variation and uncertainty in the leak frequency. The analysis shows that there is high uncertainty in the estimated leak frequencies due to sparsity in compressed natural gas data. These leak frequencies may still be useful in compressed natural gas system risk assessments, as long as this high uncertainty is acknowledged and considered appropriately.
Liquid hydrogen (LH2) used as a fuel onboard a heavy-duty vehicle can result in increased storage capacity and faster refueling relative to compressed gas. However, there are concerns about hydrogen losses from boil-off, potential safety issues, gaps in codes and standards for cryogenic hydrogen fuel, and technical challenges with LH2 systems for widespread transportation applications. A failure modes and effects analysis (FMEA), a safety codes and standards review, and a design review of the onboard liquid hydrogen system for a heavy-duty vehicle identified some of these potential safety issues and gaps in the codes and standards. The FMEA identified some medium and low risk failure points of the conceptual design, and the design review identified how carefully pressure relief needs to be considered for LH2 systems. In addition, a conceptual design for a LH2 refueling station was developed. Rough capital costs for the refueling station design were $\$1 million$ and the layout occupied approximately 13,000 ft2. These results can be used to inform future designs and analyses for LH2 heavy-duty vehicles.
Hydrogen is an important resource for many different industries throughout the world, including refining, manufacturing, and as a direct energy source. Hydrogen production, through methods such as steam methane reforming, has been developed over several decades. There is a large global demand for hydrogen from these industries and safe production and distribution are paramount for hydrogen systems. Codes and standards have been developed to reduce the risk associated with hydrogen accidents to the public. These codes and standards are similar to those in other industries in which there is inherent risk to the public, such as gasoline and natural gas production and distribution. Although there will always be a risk to the public in these types of fuels, the codes and standards are developed to reduce the likelihood of an accident occurring and reduce the severity of impact, should one occur. This report reviews the current state of hydrogen in the United States and outlines the codes and standards that ensure safe operation of hydrogen systems. The total hydrogen demand and use in different industries is identified. Additionally, the current landscape of hydrogen production and fueling stations in the United States is outlined. The safety of hydrogen systems is discussed through an overview of the purpose, methods, and content included in codes and standards. As outlined in this safety overview, the risk to the public in operation of hydrogen generation facilities and fueling stations is reduced through implementation of appropriate measures. Codes, such as NFPA 2, ensure that the risk associated with a hydrogen system is no greater than the risk presented by gasoline refueling stations.
The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, methane, and propane systems. HyRAM+ is designed to facilitate the use of state-of-the-art models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impacts on people. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards, and to provide developed models in a publicly-accessible toolkit usable by all stakeholders. This document provides a description of the methodology and models contained in HyRAM+ version 4.1. The two most significant changes for HyRAM+ version 4.1 from HyRAM+ version 4.0 are direct incorporation of unconfined overpressure into the QRA calculations and modification of the models for cryogenic liquid flow through an orifice. In QRA mode, the user no longer needs to input peak overpressure and impulse values that were calculated separately; rather, the unconfined overpressure is estimated for the given system inputs, leak size, and occupant location. The orifice flow model now solves for the maximum mass flux through the orifice at constant entropy while conserving energy, which does not require a direct speed of sound calculation. This does not affect the mass flow for all-gaseous releases; the method results in the same speed of sound for choked flow. However, this method does result in a higher (and more realistic) mass flow rate for a given leak size for liquid releases than was previously calculated.
There are several different calculation approaches and tools that can be used to evaluate the risk of hydrogen energy applications. A comparative study of Air Liquide’s ALDEA (Air Liquide Dispersion and Explosion Assessment) tools suite and Sandia’s HyRAM (Hydrogen Risk Assessment Models) toolkit has been conducted. The purpose of this study was to understand and evaluate the differences between the two calculation approaches, and identify areas for model improvements. There were several scenarios examined in this effort regarding hydrogen release dynamics. These scenarios include free jet release cases at varying pressures, vessel blowdown, and hydrogen build-up scenarios with and without ventilation. For each scenario, the input and output of the HyRAM calculations are documented, along with a comparison to the ALDEA results. Generally, the results from the two different tools were reasonably aligned. However, there were fundamental differences in evaluation methodology and functional limitations in HyRAM that caused discrepancies in some calculations.
The HyRAM+ software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen, methane, and propane infrastructure and transportation systems. HyRAM+ is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of safety, hazards, and risk. HyRAM+ includes generic probabilities for equipment failures, probabilistic models for the impact of heat flux on humans and structures, and experimentally validated first-order models of release and flame physics. HyRAM+ integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hazards (thermal effects from jet fires, overpressure effects from delayed ignition), and assessing impact on people and structures. HyRAM+ is developed at Sandia National Laboratories to support the development and revision of national and international codes and standards. HyRAM+ is a research software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals. This document provides a description of the methodology and models contained in HyRAM+ version 4.0. The most significant change for HyRAM+ version 4.0 from HyRAM version 3.1 is the incorporation of other alternative fuels, namely methane (as a proxy for natural gas) and propane into the toolkit. This change necessitated significant changes to the installable graphical user interface as well as changes to the back-end Python models. A second major change is the inclusion of physics models for the overpressure associated with the delayed ignition of an unconfined jet/plume of flammable gas.
The feasibility and component cost of hydrogen rail refueling infrastructure is examined. Example reference stations can inform future studies on components and systems specifically for hydrogen rail refueling facilities. All of the 5 designs considered assumed the bulk storage of liquid hydrogen on-site, from which either gaseous or liquid hydrogen would be dispensed. The first design was estimated to refuel 10 multiple unit trains per day, each train containing 260 kg of gaseous hydrogen at 350 bar on-board. The second base design targeted the refueling of 50 passenger locomotives, each with 400 kg of gaseous hydrogen on-board at 350 bar. Variations from this basic design were made to consider the effect of two different filling times, two different hydrogen compression methods, and two different station design approaches. For each design variation, components were sized, approximate costs were estimated for major components, and physical layouts were created. For both gaseous hydrogen-dispensing base designs, the design of direct-fill using a cryopump design was the lowest cost due to the high cost of the cascade storage system and gas compressor. The last three base designs all assumed that liquid hydrogen was dispensed into tender cars for freight locomotives that required 7,500 kg of liquid hydrogen, and the three different designs assumed that 5, 50, or 200 tender cars were refueled every day. The total component costs are very different for each design, because each design has a very different dispensing capacity. The total component cost for these three designs are driven by the cost of the liquid hydrogen tank; additionally, delivering that much liquid hydrogen to the refueling facility may not be practical. Many of the designs needed the use of multiple evaporators, compressors, and cryopumps operating in parallel to meet required flow rates. In the future, the components identified here can be improved and scaled-up to better fit the needs of heavy-duty refueling facilities. This study provides basic feasibility and first-order design guidance for hydrogen refueling facilities serving emerging rail applications.
Hydrogen can be used to reduce carbon emissions by blending into other gaseous energy carriers, such as natural gas. However, hydrogen blending into natural gas has important implications for safety which need to be evaluated. Hydrogen has different physical properties than natural gas, and these properties affect safety evaluations concerning a leak of the blended gas. The intent of this report is to begin to investigate the safety implications of blending hydrogen into the natural gas infrastructure with respect to a leak event from a pipeline. A literature review was conducted to identify existing data that will better inform future hazard and risk assessments for hydrogen/natural gas blends. Metrics with safety implications such as heat flux and dispersion behavior may be affected by the overall blend ratio of the mixture. Of the literature reviewed, there was no directly observed separation of the hydrogen from the natural gas or methane blend. No literature was identified that experimentally examined unconfined releases such as concentration fields or concentration at specific distances. Computational efforts have predicted concentration fields by modified versions of existing engineering models, but the validation of these models is limited by the unavailability of literature data. There are multiple literature sources that measured flame lengths and heat flux values, which are both relevant metrics to risk and hazard assessments. These data can be more directly compared to the outputs of existing engineering models for validation.
The Hydrogen Risk Assessment Models (HyRAM) software version 3 uses a real gas equation of state rather than the Abel-Noble equation of state that is used in 2.0 and previous versions. This change enables the use of HyRAM 3 for cryogenic hydrogen flows, whereas the Abel-Noble equation of state is not accurate at low temperatures. HyRAM 3.1 results were compared to experimental data from the literature in order to demonstrate the accuracy of the physics models. HyRAM 3.1 results were also compared to HyRAM 2.0 for high-pressure, non-cryogenic flows to highlight the differences in predictions between the two major versions of HyRAM. Validation data sets are from multiple groups and span the range of HyRAM physics models, including tank blowdown, unignited dispersion jet plume, ignited jet flame, and accumulation and overpressure inside an enclosure. Both versions 2.0 and 3.1 of HyRAM are accurate for predictions of blowdowns, diffusion jets, and diffusion flames of hydrogen at pressures up to 900 bar, and HyRAM 3.1 also shows good agreement with cryogenic hydrogen data. Overall, HyRAM 3.1 improves on the accuracy of the physical models relative to HyRAM 2.0. In most cases, this reduces the conservatism in risk calculations using HyRAM.
The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM includes generic probabilities for hydrogen equipment failures, probabilistic models for the impact of heat flux on humans and structures, and experimentally validated first-order models of hydrogen release and flame physics. HyRAM integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet res, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is developed at Sandia National Laboratories for the U.S. Department of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. HyRAM is a research software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals. This document provides a description of the methodology and models contained in HyRAM version 3.1. There have been several impactful updates since version 3.0. HyRAM 3.1 contains a correction to use the volume fraction for two-phase speed of sound calculations; this only affects cryogenic releases in which two-phase ow (vapor and liquid) is predicted in the orifice. Other changes include clarifications that inputs for tank pressure should be given in absolute pressure, not gauge pressure. Additionally, the interface now rejects invalid inputs to probability distributions, and the less accurate single-point radiative source model selection was removed from the interface.
This analysis provides estimates on the leak frequencies of nine components found in liquefied natural gas (LNG) facilities. Data was taken from a variety of sources, with 25 different data sets included in the analysis. A hierarchical Bayesian model was used that assumes that the log leak frequency follows a normal distribution and the logarithm of the mean of this normal distribution is a linear function of the logarithm of the fractional leak area. This type of model uses uninformed prior distributions that are updated with applicable data. Separate models are fit for each component listed. Five order-of-magnitude fractional leak areas are considered, based on the flow area of the component. Three types of supporting analyses were performed: sensitivity of the model to the data set used, sensitivity of the leak frequency estimates to differences in the model structure or prior distributions, and sufficiency of sample sized used for convergence. Recommended leak frequency distributions for all component types and leak sizes are given. These leak frequency predictions can be used for quantitative risk assessments in the future.
The application of hydrogen as an energy carrier has been expanding into industrial and transportation sectors enabling sustainable energy resources and providing a zero-emission energy infrastructure. The hydrogen supply infrastructure includes processes from production and storage, to transportation and distribution, to end use. Each portion of the hydrogen supply infrastructure is regulated by international, federal, state, and local entities. Regulations are enforced by entities which provide guidance and updates as necessary. While energy sources such as natural gas are currently regulated via the Code of Federal Regulations and United States Code, there might be some ambiguity as to which regulations are applicable to hydrogen and where regulatory gaps may exist. This report contains an overview of the regulations that apply to hydrogen, and those that may indirectly cover hydrogen as an energy carrier participating in a sustainable zero emission global energy system. As part of this effort, the infrastructure of hydrogen systems and regulation enforcement entities are defined, and a visual map and reference table are developed. This regulatory map and table can be used to identify the boundaries of federal oversight for each component of the hydrogen supply value chain which includes production, storage, distribution, and use.
Alternatives to conventional diesel electric propulsion are currently of interest to rail operators. In the U.S., smaller railroads have implemented natural gas and other railroads are exploring hydrogen technology as a cleaner alternative to diesel. Diesel, battery, hydrogen fuel cell, or track electrification all have trade-offs for operations, economics, safety, and public acceptability. A framework to compare different technologies for specific applications is useful to optimize the desired results. Standards from the Association of American Railroads (AAR) and other industry best practices were reviewed for applicability with hydrogen fuel cell technology. Some technical gaps relate to the physical properties of hydrogen, such as embrittlement of metals, invisible flames, and low liquid temperatures. A reassessment of material selection, leak/flame detection, and thermal insulation methods is required. Hydrogen is less dense and diffuses more easily than natural gas, and liquid hydrogen is colder than liquefied natural gas. Different densities between natural gas and hydrogen require modifications to tank designs and flow rates. Leaked hydrogen will rise rather than pool on the ground like diesel, requiring a modification to the location of hydrogen tanks on rolling stock. Finally, the vibration and shock experienced in the rail environment is higher than light-duty vehicles and stationary applications for which current fuel cell technology has been developed, requiring a modification in tank design requirements and testing.
The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability (HAZOP) study was performed to identify risk-significant scenarios related to light-duty hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location, behavior, and severity of hydrogen release based on key HAZOP scenarios. Here, this work compares current fire code requirements to an alternate ventilation strategy to further reduce potential hazardous conditions. Modeling shows that position, direction, and velocity of ventilation have a significant impact on the amount of instantaneous flammable mass in the domain.
The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM includes generic probabilities for hydrogen equipment failures, probabilistic models for the impact of heat flux on humans and structures, and computationally and experimentally validated first-order models of hydrogen release and flame physics. HyRAM integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is developed at Sandia National Laboratories for the U.S. Department of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. HyRAM is a research software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals. This document provides a description of the methodology and models contained in the HyRAM version 3.0. HyRAM 3.0 includes the new ability to model cryogenic hydrogen releases from liquid hydrogen systems, using a different property calculation method and different equations of state. Other changes include modifications to the ignition probability calculations, component leak frequency calculations, and addition of default impulse data.
The need to understand the risks and implications of traffic incidents involving hydrogen fuel cell electric vehicles in tunnels is increasing in importance with higher numbers of these vehicles being deployed. A risk analysis was performed to capture potential scenarios that could occur in the event of a crash and provide a quantitative calculation for the probability of each scenario occurring, with a qualitative categorization of possible consequences. The risk analysis was structured using an event sequence diagram with probability distributions on each event in the tree and random sampling was used to estimate resulting probability distributions for each end-state scenario. The most likely consequence of a crash is no additional hazard from the hydrogen fuel (98.1–99.9% probability) beyond the existing hazards in a vehicle crash, although some factors need additional data and study to validate. These scenarios include minor crashes with no release or ignition of hydrogen. When the hydrogen does ignite, it is most likely a jet flame from the pressure relief device release due to a hydrocarbon fire (0.03–1.8% probability). This work represents a detailed assessment of the state-of-knowledge of the likelihood associated with various vehicle crash scenarios. This is used in an event sequence framework with uncertainty propagation to estimate uncertainty around the probability of each scenario occurring.
The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability study (HAZOP) was performed to identify key risk-significant scenarios related to hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location, behavior, and severity of hydrogen release based on key HAZOP scenarios. This work compares current fire code requirements to an alternate ventilation strategy to further reduce potentially hazardous conditions. Overall, the amount of flammable mass of hydrogen at any one time in the simulation is low compared to the total mass of hydrogen released, due to the low flow rate of a low pressure release. It is shown that position, direction, and velocity of ventilation have a significant impact on the amount of instantaneous flammable mass in the domain.
Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project initiated by the DOE in 2015 and executed by Sandia National Laboratories and the National Renewable Energy Laboratory to address R&D barriers to the deployment of hydrogen fueling infrastructure. One key barrier to the deployment of fueling stations is the land area they require (i.e. "footprint"). Space is particularly a constraint in dense urban areas where hydrogen demand is high but space for fueling stations is limited. This work presents current fire code requirements that inform station footprint, then identifies and quantifies opportunities to reduce footprint without altering the safety profile of fueling stations. Opportunities analyzed include potential new methods of hydrogen delivery, as well as alternative placements of station technologies (i.e. rooftop/underground fuel storage). As interest in heavy-duty fueling stations and other markets for hydrogen grows, this study can inform techniques to reduce the footprint of heavy-duty stations as well. This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas, delivered liquid, and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes, colocation with gasoline refueling, alternate delivery assumptions, underground storage of hydrogen, and rooftop storage of hydrogen, resulting in a total of 32 different station designs. The footprints of the base case stations range from 13,000 to 21,000 ft2 . A significant focus of this study is the NFPA 2 requirements, especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases, these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path, traffic flow, parking, and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example, burying hydrogen storage tanks underground can reduce footprint, but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fueling stations can incorporate, the approximate sizes of generic station lots, and considerations that might be unique to particular designs.
This report reviews and offers recommendations from Sandia National transportation of hazardous materials in the U.S. The risk criteria should be used with the results of a quantitative risk assessment (QRA) in risk acceptance decision-making. The QRA for transportation is fundamentally the same as a fixed facility. However, there are differences in calculations of both the probabilities of occurrence and location of hazards. Involuntary individual fatality risk is recommended to be acceptable for annual probabilities of less than 3 x 10-7 for any population, including vulnerable populations, and may be considered acceptable at the regulators discretion for non-sensitive/non-vulnerable populations if less than 5 x 10-5 and demonstrated to be as low as reasonably practicable (ALARP). Societal risk is recommended to be acceptable if the annual frequency of events that would result in N or more fatalities is less than 10-5/N events per year and may be considered acceptable at the regulators discretion if less than 10-3/N events per year and demonstrated to be ALARP. These criteria should be applied to the societal risk over the entire transportation route, not normalized per-distance. These values are adapted from the National Fire Protection Association (NFPA) 59A, a U.S. and international standard for liquefied natural gas (LNG) facility siting.
DOE has identified consistent safety, codes, and standards as a critical need for the deployment of hydrogen technologies, with key barriers related to the availability and implementation of technical information in the development of regulations, codes, and standards. Advances in codes and standards have been enabled by risk-informed approaches to create and implement revisions to codes, such as National Fire Protection Association (NFPA) 2, NFPA 55, and International Organization for Standardization (ISO) Technical Specification (TS)-19880-1. This project provides the technical basis for these revisions, enabling the assessment of the safety of hydrogen fuel cell systems and infrastructure using QRA and physics-based models of hydrogen behavior. The risk and behavior tools that are developed in this project are motivated by, shared directly with, and used by the committees revising relevant codes and standards, thus forming the scientific basis to ensure that code requirements are consistent, logical, and defensible.
Additional fueling stations need to be constructed in the U.S. to enable the wide-spread adoption of fuel cell electric vehicles. A wide variety of private and public stakeholders are involved in the development of this hydrogen fueling infrastructure. Each stakeholder has particular needs in the station planning, development, and operation process that may include evaluation of potential sites and requirements, understanding the components in a typical system, and/or improving public acceptance of this technology. Publicly available templates of representative station designs can be used to meet many of these stakeholder needs. These 'Reference Stations' help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design, enabling quick assessment of the suitability of a particular site for a hydrogen station, and identifying contributors to poor economics and research and development areas for certain station designs.
In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. The rover on the proposed spacecraft will use a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. The MMRTG uses radioactive plutonium dioxide. NASA is preparing a Supplemental Environmental Impact Statement (SEIS) for the mission in accordance with the National Environmental Policy Act. This Nuclear Risk Assessment addresses the responses of the MMRTG option to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks discussed in the SEIS.
Hydrogen Risk Assessment Models (HyRAM) is a software toolkit that provides a basis for quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM integrates validated, analytical models of hydrogen behavior, statistics, and a standardized QRA approach to generate useful, repeatable data for the safety analysis of various hydrogen systems. HyRAM is a software developed by Sandia National Laboratories for the U.S. Department of Energy. This document demonstrates how to use HyRAM to recreate a hydrogen system and obtain relevant data regarding potential risk. Specific examples are utilized throughout this document, providing detailed tutorials of HyRAM features with respect to hydrogen system safety analysis and risk assessment.
This report presents a research framework for the application of quantitative risk assessment to hydrogen materials, based on the identification of potential areas of research, a literature review, and a plan for future work in the area of hydrogen materials risk. After outlining basics on hydrogen infrastructure, with a focus on pressure vessels, a number of materials risk topics are identified and discussed. Of these, four important areas of risk application to hydrogen materials are highlighted and discussed in further detail. The four topics are initial crack distribution in metals, damage and stress rupture in composites, and polymer behavior in high pressure hydrogen. These topics vary in scope, specificity, level of anticipated resources required, and potential impact to the field. Finally, recommendations are made for future research on the highest priority topics.