Publications

Results 151–175 of 96,771

Search results

Jump to search filters

Low-Frequency Noise and Deep Level Transient Spectroscopy in n-p-n Si Bipolar Junction Transistors Irradiated with Si Ions

IEEE Transactions on Nuclear Science

Luo, Xuyi; Montes, Jossue; Koukourinkova-Duncan, Sabina; Vaandrager, Bastiaan L.; Bielejec, Edward S.; Vizkelethy, Gyorgy V.; Schrimpf, Ronald D.; Fleetwood, Daniel M.; Zhang, En X.

The properties of defects in n-p-n Si bipolar junction transistors (BJTs) caused by 17-MeV Si ions are investigated via current-voltage, low-frequency (LF) noise, and deep level transient spectroscopy (DLTS) measurements. Four prominent radiation-induced defects in the base-collector junction of these transistors are identified via DLTS. At least two defect levels are observed in temperature-dependent LF 1/f noise measurements, one that is similar to a prominent defect in DLTS and another that is not. Defect microstructures are discussed. Our results show that DLTS and 1/f noise measurements can provide complementary information about defects in linear bipolar devices.

More Details

Microwave-tunable diode effect in asymmetric SQUIDs with topological Josephson junctions

Physical Review Research

Cuozzo, Joseph J.; Pan, Wei P.; Shabani, Javad; Rossi, Enrico

In superconducting systems in which inversion and time-reversal symmetry are simultaneously broken the critical current for positive and negative current bias can be different. For superconducting systems formed by Josephson junctions (JJs) this effect is termed Josephson diode effect. In this paper, we study the Josephson diode effect for a superconducting quantum interference device (SQUID) formed by a topological JJ with a 4π-periodic current-phase relationship and a topologically trivial JJ. We show how the fractional Josephson effect manifests in the Josephson diode effect with the application of a magnetic field and how tuning properties of the trivial SQUID arm can lead to diode polarity switching. We then investigate the ac response and show that the polarity of the diode effect can be tuned by varying the ac power and discuss differences between the ac diode effect of asymmetric SQUIDs with no topological JJ and SQUIDs in which one JJ is topological.

More Details

High-Temperature Freeze and Leak-Resistant Advanced Molten Salt Valve – Final Project Report

Armijo, Kenneth M.; Overacker, Aaron; Madden, Dimitri A.; Burton, Patrick D.; Parish, Jeffrey; Nelson, Michael; Radman, Ivica; Kruizenga, Alan; Brumback, Kyle

The overall goal of this investigation was to develop an innovative high-temperature chloride molten salt flow control valve capable of operation up to 750 °C. The team developed an integrated active and passive thermal management system to ensure robust design for freeze-thaw cycles, with either a bellows-sealed configuration, a high-temperature stuffing box, or combination of the two. The STM system is unique in the industry.

More Details

Testing and Design of Discriminants for Local Seismic Events Recorded during the Redmond Salt Mine Monitoring Experiment

Bulletin of the Seismological Society of America

Tibi, Rigobert T.; Downey, Nathan J.; Brogan, Ronald

The Redmond Salt Mine (RSM) Monitoring Experiment in Utah was designed to record seis-moacoustic data at distances less than 50 km for algorithm testing and development. During the experiment from October 2017 to July 2019, six broadband seismic stations were operating at a time, with three of them having fixed locations for the duration, whereas the three other stations were moved to different locations every one-and-half to two-and-half months. RSM operations consist of nighttime underground blasting several times per week. The RSM is located in proximity to a belt of active seismicity, allowing direct comparison of natural and anthropogenic sources. Using the recorded data set, we built 1373 events with local magnitude (ML) of −2.4 and lower to 3.3. For 75 blasts (RMEs) from the Redmond Salt Mine and 206 tectonic earthquakes (EQs), both ML and the coda duration magnitude (MC) are well constrained. We used these events to test and design discriminants that separate the RMEs from the EQs and are effective at local distances. The discriminants consist of ML −MC, low-frequency Sg to high-frequency Sg, Pg/Sg phase-amplitude ratios, and Rg/Sg spectral amplitude ratios, as well as different combinations of two or more of these classifiers. The areas under the receiver operating characteristic curves (AUCs) of 0.92–1.0 for ML −MC, low-frequency Sg to high-frequency Sg, and Rg/Sg indicate that these discriminants are very effective. Conversely, the AUC of only 0.57 for Pg/Sg suggests that this discriminant is only slightly better than a random classifier. Among the effective classifiers, Rg/Sg, shows the lowest likelihood of misclassification (4.3%) for the populations. Results of joint discriminant analyses suggest that even the arguably inef-fective single classifier, like Pg/Sg in this case, can provide some value when used in combi-nation with others.

More Details

Benchmarking MELCOR's NAC Package to ABCOVE Tests AB5 and AB6

De Luna, Brandon; Phillips, Jesse P.

This report presents analyses of the AB5 and AB6 ABCOVE sodium spray fire experiments with the MELCOR code. This code simulates the progression of accident events for analysis and auditing purposes of nuclear facilities during accident conditions. Historically, the ABCOVE experiments have contributed to the validation of aerosol physics and related phenomena. Given advancements in sodium-cooled reactor designs, characterization of the sodium spray combustion may further the review and...

More Details

Photovoltaic hotspots: A mitigation technique and its thermal cycle

Optik

Dhimish, Mahmoud; Theristis, Marios; D'Alessandro, Vincenzo

In the rapidly evolving field of solar energy, Photovoltaic (PV) manufacturers are constantly challenged by the degradation of PV modules due to localized overheating, commonly known as hotspots. This issue not only reduce the efficiency of solar panels but, in severe cases, can lead to irreversible damage, malfunctioning, and even fire hazards. Addressing this critical challenge, our research introduces an innovative electronic device designed to effectively mitigate PV hotspots. This pioneering solution consists of a novel combination of a current comparator and a current mirror circuit. These components are uniquely integrated with an automatic switching mechanism, notably eliminating the need for traditional bypass diodes. We rigorously tested and validated this device on PV modules exhibiting both adjacent and non-adjacent hotspots. Our findings are groundbreaking: the hotspot temperatures were significantly reduced from a dangerous 55 °C to a safer 35 °C. Moreover, this intervention remarkably enhanced the output power of the modules by up to 5.3%. This research not only contributes a practical solution to a longstanding problem in solar panel efficiency but also opens new pathways for enhancing the safety and longevity of solar PV systems.

More Details

Adaptive Protection and Control for High Penetration PV and Grid Resilience (Final Technical Report)

Reno, Matthew J.; Jimenez Aparicio, Miguel J.; Patel, Trupal; Summers, Adam; Hernandez Alvidrez, Javier H.; Wilches-Bernal, Felipe; Montoya, Armando Y.; Dow, Andrew R.R.; Kelly, Daniel; Matthews, Ronald C.; Ojetola, Samuel; Darbali-Zamora, Rachid; Palacios, Felipe N.; Flicker, Jack D.; Bidram, Ali; Paruthiyil, Sajay K.; Montoya, Rudy; Poudel, Binod; Rajendra-Kurup, Aswathy; Martinez-Ramon, Manel; Brahma, Sukumar; Bin Gani, Munim; Adhikari, Prabin; Gopalakrishnan, Ashok; Alkraimeen, Yazid; Dong, Yimai; Sun, Liangyi; Zheng, Ce; Oppedahl, Gary; Bauer, Daniel

The report summarizes the work and accomplishments of DOE SETO funded project 36533 “Adaptive Protection and Control for High Penetration PV and Grid Resilience”. In order to increase the amount of distributed solar power that can be integrated into the distribution system, new methods for optimal adaptive protection, artificial intelligence or machine learning based protection, and time domain traveling wave protection are developed and demonstrated in hardware-in-the-loop and a field demonstration.

More Details

Notes on Linear FM Chirp for Radar

Doerry, Armin; Bickel, Douglas L.

One of the most iconic of radar waveforms is the Linear FM chirp. It is well-behaved and well-understood, and has become the gold standard against which other radar waveforms are measured. It has a number of desirable attributes, but is not without some issues. It may be processed by a number of techniques with many variations. Details of the Linear FM chirp are presented and discussed in this report.

More Details

Hydrologic Impacts of a Strike-Slip Fault Zone: Insights from Joint 3D Body-Wave Tomography of Rock Valley

Bulletin of the Seismological Society of America

Harding, Jennifer L.; Preston, Leiph A.; Bodmer, Miles A.

The Rock Valley fault zone (RVFZ), an intraplate strike-slip fault zone in the southern Nevada National Security Site (NNSS), hosted a series of very shallow (<3 km) earthquakes in 1993. The RVFZ may also have hydrological significance within the NNSS, potentially playing a role in regional groundwater flow, but there is a lack of local hydrological data. In the Spring of 2021, we collected active-source accelerated weight drop seismic data over part of the RVFZ to better characterize the shallow subsurface. We manually picked ∼17,000 P-wave travel times and over 14,000 S-wave travel times, which were inverted for P-wave velocity (VP), S-wave velocity (VS), and VP = VS ratio in a 3D joint tomographic inversion scheme. Seismic velocities are imaged as deep as ∼700 m in areas and generally align with geologic and structural expectations. VP and VS are relatively reduced near mapped and inferred faults, with the most prominent lower VP and VS zone around the densest collection of faults. We image VP = VS ratios ranging from ∼1.5 to ∼2.4, the extremes of which occur at a depth of ∼100 m and are juxtaposed across a fault. One possible interpretation of the imaged seismic velocities is enhanced fault damage near the densest collection of faults with relatively higher porosity and/or crack density at ∼100 m depth, with patches of semiperched groundwater present in the sedimentary rock in higher VP = VS areas and drier rock in lower VP = VS areas. A relatively higher VP = VS area beneath the densest faults persists at depth, which suggests percolation of groundwater via the fault damage zone to the regionally connected lower carbonate aquifer. Potentially, the presence and movement of groundwater may have played a role in the 1993 earthquake aftershocks.

More Details

Global-Scale Convergence Obscures Inconsistencies in Soil Carbon Change Predicted by Earth System Models

AGU Advances

Mishra, Umakant; Shi, Zheng; Hoffman, Forrest M.; Xu, Min; Allison, Steven D.; Zhou, Jizhong; Randerson, James T.

Soil carbon (C) responses to environmental change represent a major source of uncertainty in the global C cycle. Feedbacks between soil C stocks and climate drivers could impact atmospheric CO2 levels, further altering the climate. Here, we assessed the reliability of Earth system model (ESM) predictions of soil C change using the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6). ESMs predicted global soil C gains under the high emission scenario, with soils taking up 43.9 Pg (95% CI: 9.2–78.5 Pg) C on average during the 21st century. The variation in global soil C change declined significantly from CMIP5 (with average of 48.4 Pg [95% CI: 2.0–94.9 Pg] C) to CMIP6 models (with average of 39.3 Pg [95% CI: 23.9–54.7 Pg] C). For some models, a small C increase in all biomes contributed to this convergence. For other models, offsetting responses between cold and warm biomes contributed to convergence. Although soil C predictions appeared to converge in CMIP6, the dominant processes driving soil C change at global or biome scales differed among models and in many cases between earlier and later versions of the same model. Random Forest models, for soil carbon dynamics, accounted for more than 63% variation of the global soil C change predicted by CMIP5 ESMs, but only 36% for CMIP6 models. Although most CMIP6 models apparently agree on increased soil C storage during the 21st century, this consensus obscures substantial model disagreement on the mechanisms underlying soil C response, calling into question the reliability of model predictions.

More Details

The Effects of Threshold Voltage and Number of Fins per Transistor on the TID Response of GF 12LP Technology

IEEE Transactions on Nuclear Science

Vidana, Aldo I.; Dodds, Nathaniel A.; Nowlin, Robert N.; Wallace, Trace M.; Oldiges, Philip; Xiong, Jenny; Kauppila, Jeffrey S.; Massengill, Lloyd W.; Barnaby, Hugh J.

This abstract presents a comprehensive analysis of total ionizing dose (TID) response in GlobalFoundries' (GFs) 12LP 12 nm bulk Fin-based field effect transistor (FinFET) technology using 10 keV X-rays. Devices with higher threshold voltages (VTs) demonstrated lower increases in OFF-state leakage current (I_ DS, OFF ) post-irradiation, highlighting the mitigating role of high VT in TID response. Our data show that transistors with fewer fins exhibit superior TID resistance, implying lower susceptibility to radiation effects. Our study also probed two bias conditions, 'Gate-On' and 'Pass-Gate,' with the former displaying more severe TID degradation. Interestingly, p-type devices displayed negligible degradation, underscoring their inherent resilience to TID effects. Additionally, medium thick n-type devices echoed the fin-count-dependent TID response observed in other transistor types, further strengthening our findings. These results underscore the importance of strategic transistor selection and design for enhancing the TID resilience of future complementary metal-oxide semiconductor (CMOS) FinFET architectures, particularly critical in radiation-intense environments.

More Details

Wave Energy Converter Power Take-Off Modeling and Validation from Experimental Bench Tests

IEEE Journal of Oceanic Engineering

Giorgi, Simone; Coe, Ryan G.; Reasoner, Meagan M.; Bacelli, Giorgio B.; Forbush, Dominic D.; Jensen, Scott; Cazenave, Francois; Hamilton, Andrew

This article describes the implementation of a new numerical model of the power take-off system installed in the Monterey Bay Aquarium Research Institute wave energy converter, a device developed to provide power to various oceanic research missions. The simultaneous presence of hydraulic, pneumatic, and electrical subsystems in the power take-off system represents a significant challenge in forging an accurate model able to replicate the main dynamic characteristics of the system. The validation of the new numerical model is addressed by comparing simulations with the measurements obtained during a series of bench tests. Data from the bench tests show good agreement with the numerical model. The validated model provides deeper insights into the complex nonlinear dynamics of the power take-off system and will support further performance improvements in the future.

More Details

Mechanical behavior of polyamide-6 after combined photo-oxidative and hygrothermal aging

Colloid and Polymer Science

Cundiff, Kenneth N.; Rodriguez, A.K.; Benzerga, A.A.

Abstract: The effect of moisture on the photo-oxidative degradation of polyamide-6 (PA-6) was studied by analyzing the mechanical response after two different accelerated aging procedures. In the first aging procedure, the PA-6 was only exposed to ultra-violet (UV) radiation at 60 ∘C. In the second procedure, the same duration of UV radiation was periodically interrupted while the relative humidity was raised to 100%. Diffusion-limited and nominally homogeneous degradation conditions were investigated using bulk and film specimens, respectively. Accelerated UV aging reduced the ductility of PA-6, but the additional hygrothermal exposure had no effect on the ductility or strength, indicating that humidity did not influence the photo-oxidation of PA-6. This finding contrasts with previous studies that found thermo-oxidation of PA-6 was accelerated by moisture. Graphical abstract: (Figure presented.)

More Details

Protection of 100% Inverter-dominated Power Systems with Grid-Forming Inverters and Protection Relays – Gap Analysis and Expert Interviews

Muenz, Ulrich; Bhela, Siddharth; Xue, Nan; Banerjee, Abhishek; Reno, Matthew J.; Kelly, Daniel; Farantatos, Evangelos; Haddadi, Aboutaleb; Ramasubramanian, Deepak; Banaie, Amin

This report summarizes a gap analysis resulting from a literature review and expert interviews conducted by subject matter experts from Sandia National Laboratory, Siemens, and the Electric Power Research Institute (EPRI) in Spring 2023. The gap analysis consists of two main parts: The fault-ride through (FRT) behavior of grid-forming (GFM) inverter-based resources (IBR) and the response of state-of-the-art protection relays to the fault currents and voltages from GFM IBRs.

More Details

CSPlib: A performance portable parallel software toolkit for analyzing complex kinetic mechanisms

Computer Physics Communications

Diaz-Ibarra, Oscar H.; Kim, Kyungjoo; Najm, H.N.; Safta, Cosmin S.

Computational singular perturbation (CSP) is a method to analyze dynamical systems. It targets the decoupling of fast and slow dynamics using an alternate linear expansion of the right-hand side of the governing equations based on eigenanalysis of the associated Jacobian matrix. This representation facilitates diagnostic analysis, detection and control of stiffness, and the development of simplified models. We have implemented CSP in a C++ open-source library CSPlib1 using the Kokkos2 parallel programming model to address portability across diverse heterogeneous computing platforms, i.e., multi/many-core CPUs and GPUs. We describe the CSPlib implementation and present its computational performance across different computing platforms using several test problems. Specifically, we test the CSPlib performance for a constant pressure ignition reactor model on different architectures, including IBM Power 9, Intel Xeon Skylake, and NVIDIA V100 GPU. The size of the chemical kinetic mechanism is varied in these tests. As expected, the Jacobian matrix evaluation, the eigensolution of the Jacobian matrix, and matrix inversion are the most expensive computational tasks. When considering the higher throughput characteristic of GPUs, GPUs performs better for small matrices with higher occupancy rate. CPUs gain more advantages from the higher performance of well-tuned and optimized linear algebra libraries such as OpenBLAS. Program summary: Program Title: CSPlib CPC Library link to program files: https://doi.org/10.17632/p9gb7z54sp.1 Developer's repository link: https://github.com/sandialabs/csplib Licensing provisions: BSD 2-clause Programming language: C++ Nature of problem: Dynamical systems can involve coupled processes with a wide range of time scales. The computational singular perturbation (CSP) method offers a reformulation of these systems which enables the use of dynamically-based diagnostic tools to better comprehend the dynamics by decoupling fast and slow processes. CSPlib is an open-source software library for analyzing general ordinary differential equation (ODE) and differential algebraic equation (DAE) systems, with specialized implementations for detailed chemical kinetic ODE/DAE systems. It relies on CSP for the analysis of these systems. CSPlib has been used in gas kinetic and heterogeneous catalytic kinetic models. Solution method: CSP analysis seeks a set of basis vectors to linearly decompose the right-hand side (RHS) of a dynamical system in a manner that decouples fast and slow processes. The CSP basis vectors are often well approximated with the right eigenvectors of the RHS Jacobian. And the left basis vectors are found by the inversion of the matrix, whose columns are the CSP basis vectors. Accordingly, the right and left CSP basis vectors are orthonormal. CSP defines mode amplitudes as the projections of the left basis vectors on the RHS; the time scales as the reciprocals of the RHS Jacobian eigenvalue magnitudes; and the CSP pointers, which are the element-wise multiplication of the transpose of the right CSP basis vectors with the left CSP basis vectors. For kinetic models that can be cast as the product of a generalized stoichiometric matrix and a rate of progress vector, CSP defines the participation index, which represents the contribution of a chemical reaction to each mode. Further, it defines the slow and fast importance indices, which describe the contribution of a chemical reaction to the slow and fast dynamics of a state variable, respectively. These indices are useful in diagnostic studies of dynamical systems and the construction of simplified models. Additional comments including restrictions and unusual features: CSPlib is a portable library that carries out many CSP analyses in parallel and can be used in modern high-performance platforms.

More Details

Scientific Foundations and Approaches for Qualification of Additively Manufactured Structural Components

JOM

Kramer, Sharlotte L.; Lebrun, Tyler; Pegues, Jonathan W.

Additive manufacturing (AM) maintains a wide process window that enables complex designs otherwise unattainable via conventional production technologies. However, the lack of confidence in qualifying AM parts that leverage AM process–structure–property–performance (PSPP) relationships stymies design optimization and adoption of AM. While continuing efforts to map fundamental PSPP relationships that cover the potential design space, we first need pragmatic and then long-term solutions that overcome challenges associated with qualifying AM-designed parts. Two pragmatic solutions include: (1) AM material specifications to substantiate process reproducibility, and (2) component risk categorization to associate system risk relative to part performance and required part quality. A novel qualification paradigm under development involves efficient prediction of part performance over wide-ranging PSPP relationships through targeted testing and computational simulation. This paper describes projects at Sandia National Laboratories on PSPP relationship discovery, these pragmatic approaches, and the novel qualification approach.

More Details

Newton-Okounkov bodies of chemical reaction systems

Advances in Applied Mathematics

Walker, Elise; Obatake, Nida K.

Despite their noted potential in polynomial-system solving, there are few concrete examples of Newton-Okounkov bodies arising from applications. Accordingly, in this paper, we introduce a new application of Newton-Okounkov body theory to the study of chemical reaction networks and compute several examples. An important invariant of a chemical reaction network is its maximum number of positive steady states Here, we introduce a new upper bound on this number, namely the ‘Newton-Okounkov body bound’ of a chemical reaction network. Through explicit examples, we show that the Newton-Okounkov body bound of a network gives a good upper bound on its maximum number of positive steady states. We also compare this Newton-Okounkov body bound to a related upper bound, namely the mixed volume of a chemical reaction network, and find that it often achieves better bounds.

More Details

Spectral gaps of two- and three-dimensional many-body quantum systems in the thermodynamic limit

Physical Review Research

Lukin, Illya V.; Sotnikov, Andrii G.; Leamer, Jacob M.; Magann, Alicia B.; Bondar, Denys I.

We present an expression for the spectral gap, opening up new possibilities for performing and accelerating spectral calculations of quantum many-body systems. We develop and demonstrate one such possibility in the context of tensor network simulations. Our approach requires only minor modifications of the widely used simple update method and is computationally lightweight relative to other approaches. We validate it by computing spectral gaps of the 2D and 3D transverse-field Ising models and find strong agreement with previously reported perturbation theory results.

More Details

Shorting at Long Duration: Impact of Extended Discharge Capacity on Battery Solid Electrolytes

Journal of the Electrochemical Society

Hill, Ryan C.; Peretti, Amanda S.; Small, Leo J.; Spoerke, Erik D.; Cheng, Yang T.

Long-duration energy storage (LDES) is critical to a stable, resilient, and decarbonized electric grid. While batteries are emerging as important LDES devices, extended, high-power discharges necessary for cost-competitive LDES present new materials challenges. Focusing on a new generation of low-temperature molten sodium batteries, we explore here unique phenomena related to long-duration discharge through a well-known solid electrolyte, NaSICON. Specifically, molten sodium symmetric cells at 110 °C were cycled at 0.1 A cm−2 for 1-23 h discharges. Longer discharges led to unstable overpotentials, reduced resistances, and decreased electrolyte strength, caused by massive sodium penetration not observed in shorter duration discharges. Scanning electron microscopy informed mechanisms of sodium penetration and even “healing” during shorter-duration cycling. Importantly, these findings show that traditional, low-capacity, shorter-duration tests may not sufficiently inform fundamental materials phenomena that will impact LDES battery performance. This case highlights the importance that candidate LDES batteries be tested under pertinent long-duration conditions.

More Details

Transport coefficients of warm dense matter from Kohn-Sham density functional theory

Physics of Plasmas

Melton, Cody A.; Clay III, Raymond C.; Cochrane, Kyle C.; Dumi, Amanda; Gardiner, Thomas A.; Lentz, Meghan; Townsend, Joshua P.

We present a comprehensive study of transport coefficients including DC electrical conductivity and related optical properties, electrical contribution to the thermal conductivity, and the shear viscosity via ab initio molecular dynamics and density functional theory calculations on the “priority 1” cases from the “Second Charged-Particle Transport Coefficient Workshop” [Stanek et al., Phys. Plasmas (to be published 2024)]. The purpose of this work is to carefully document the entire workflow used to generate our reported transport coefficients, up to and including our definitions of finite size and statistical convergence, extrapolation techniques, and choice of thermodynamic ensembles. In pursuit of accurate optical properties, we also present a novel, simple, and highly accurate algorithm for evaluating the Kramers-Kronig relations. These heuristics are often not discussed in the literature, and it is hoped that this work will facilitate the reproducibility of our data.

More Details

Regulations, Codes, and Standards Review for Underground Hydrogen Storage

Louie, Melissa S.; Ehrhart, Brian D.

Hydrogen continues to show promise as a viable contributor to achieving energy storage goals such as energy security and decarbonization in the United States. However, many new and expanded hydrogen use applications will require identifying methods of larger-scale storage than the solutions that currently exist for smaller storage applications. One possibility is to store large quantities of gaseous hydrogen below ground level. Underground storage of other fuels such as natural gas is already currently utilized, so much of the infrastructure and basic technologies can be used as a basis for underground hydrogen storage (UHS). A few commercial UHS facilities currently exist in the United States, including salt caverns owned and operated by Air Liquide, Linde, and Conoco Philips, but UHS is still a relatively new concept that has not been widely deployed. It is necessary to understand the safety risks and hazards associated with UHS before its use can be expanded and accepted more broadly. Many of these risks are addressed through regulations, codes, and standards (RCS) issued by governing bodies and organizations with expertise in certain hazards. This report is a review of RCS documents relevant to UHS, with a particular lens on potential technical gaps in existing guidance. These gaps may be specific to the physical properties of hydrogen or due to the different technologies relevant for hydrogen vs. natural gas storage. This is meant to be a high-level review to identify relevant documents and potential gaps. Formally addressing the individual gaps identified here within the codes and standards themselves would involve a more intensive analysis and differ based on the code or standard revision processes of the various publishing organizations. Therefore, presenting specific recommendations for revising the verbiage of the documents for UHS applications is left for future work and other publications.

More Details

A comparison of the neutron detection efficiency and response characteristics of two pixelated PSD-capable organic scintillator detectors with different photo-detection readout methods

Journal of Instrumentation

Marleau, Peter M.; Sweany, Melinda; Balajthy, Jon A.

We characterize the performance of two pixelated neutron detectors: a PMT-based array that utilizes Anger logic for pixel identification and a SiPM-based array that employs individual pixel readout. The SiPM-based array offers improved performance over the previously developed PMT-based detector both in terms of uniformity and neutron detection efficiency. Each detector array uses PSD-capable plastic scintillator as a detection medium. We describe the calibration and neutron efficiency measurement of both detectors using a 137Cs source for energy calibration and a 252Cf source for calibration of the neutron response. We find that the intrinsic neutron detection efficiency of the SiPM-based array is (30.2 ± 0.9)%, which is almost twice that of the PMT-based array, which we measure to be (16.9 ± 0.1)%.

More Details

High Energy Arcing Fault (HEAF) Sandia National Laboratories 2023 Report

Glover, Austin M.; Cruz-Cabrera, A.A.; Flanagan, Ryan

High Energy Arcing Faults (HEAFs) are hazardous events in which an electrical arc leads to the rapid release of energy in the form of heat, vaporized metal, and mechanical force. In Nuclear Power Plants (NPPs), these events are often accompanied by loss of essential power and complicated shutdowns. To confirm the probabilistic risk analysis (PRA) methodology in NUREG/CR-6850, which was formulated based on limited observational data, the NRC led an international experimental campaign from 2014 to

More Details

Can socio-economic indicators of vulnerability help predict spatial variations in the duration and severity of power outages due to tropical cyclones?

Environmental Research Letters

Jackson, Nicole D.; Johnson, Paul M.; Baroud, Hiba; Staid, Andrea

Tropical cyclones are the leading cause of major power outages in the U.S., and their effects can be devastating for communities. However, few studies have holistically examined the degree to which socio-economic variables can explain spatial variations in disruptions and reveal potential inequities thereof. Here, we apply machine learning techniques to analyze 20 tropical cyclones and predict county-level outage duration and percentage of customers losing power using a comprehensive set of weather, environmental, and socio-economic factors. Our models are able to accurately predict these outage response variables, but after controlling for the effects of weather conditions and environmental factors in the models, we find the effects of socio-economic variables to be largely immaterial. However, county-level data could be overlooking effects of socio-economic disparities taking place at more granular spatial scales, and we must remain aware of the fact that when faced with similar outage events, socio-economically vulnerable communities will still find it more difficult to cope with disruptions compared to less vulnerable ones.

More Details

Effect of Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Additively Manufactured Ti Alloys

Sugar, Joshua D.; Antoun, Bonnie R.; Nishimoto, Ryan K.; Cebrian, Javier C.; Rogers, Meghan J.; Chames, Jeff; Lebrun, Tyler

A previous SAND report, SAND2020-11353 described the basic metallurgical and surface roughness properties of additively manufactured Ti-64 material made using a powder bed fusion process. As part of that work, material was post-processed using a hot isostatic press (HIP) to densify and heat treat the material. This report is meant as an addendum to the original report and to provide specific data on material processed with HIP. The main focus of this report is to show the effects of HIP on the m

More Details
Results 151–175 of 96,771
Results 151–175 of 96,771