Publications

13 Results

Search results

Jump to search filters

The Effects of Threshold Voltage and Number of Fins per Transistor on the TID Response of GF 12LP Technology

IEEE Transactions on Nuclear Science

Vidana, Aldo I.; Dodds, Nathaniel A.; Nowlin, Robert N.; Wallace, Trace M.; Oldiges, Philip; Xiong, Jenny; Kauppila, Jeffrey S.; Massengill, Lloyd W.; Barnaby, Hugh J.

This abstract presents a comprehensive analysis of total ionizing dose (TID) response in GlobalFoundries' (GFs) 12LP 12 nm bulk Fin-based field effect transistor (FinFET) technology using 10 keV X-rays. Devices with higher threshold voltages (VTs) demonstrated lower increases in OFF-state leakage current (I_ DS, OFF ) post-irradiation, highlighting the mitigating role of high VT in TID response. Our data show that transistors with fewer fins exhibit superior TID resistance, implying lower susceptibility to radiation effects. Our study also probed two bias conditions, 'Gate-On' and 'Pass-Gate,' with the former displaying more severe TID degradation. Interestingly, p-type devices displayed negligible degradation, underscoring their inherent resilience to TID effects. Additionally, medium thick n-type devices echoed the fin-count-dependent TID response observed in other transistor types, further strengthening our findings. These results underscore the importance of strategic transistor selection and design for enhancing the TID resilience of future complementary metal-oxide semiconductor (CMOS) FinFET architectures, particularly critical in radiation-intense environments.

More Details

Response of Integrated Silicon Microwave pin Diodes to X-Ray and Fast-Neutron Irradiation

IEEE Transactions on Nuclear Science

Teng, Jeffrey W.; Nergui, Delgermaa; Parameswaran, Hari; Sepulveda-Ramos, Nelson E.; Tzintzarov, George N.; Mensah, Yaw; Cheon, Clifford D.; Rao, Sunil G.; Ringel, Brett; Gorchichko, Mariia; Li, Kan; Ying, Hanbin; Ildefonso, Adrian; Dodds, Nathaniel A.; Nowlin, Robert N.; Zhang, En X.; Fleetwood, Daniel M.; Cressler, John D.

Integrated silicon microwave pin diodes are exposed to 10-keV X-rays up to a dose of 2 Mrad(SiO2) and 14-MeV fast neutrons up to a fluence of 2.2, × ,10,^ 13 cm-2. Changes in both dc leakage current and small-signal circuit components are examined. Degradation in performance due to total-ionizing dose (TID) is shown to be suppressed by non-quasi-static (NQS) effects during radio frequency (RF) operation. Tolerance to displacement damage from fast neutrons is also observed, which is explained using technology computer-aided design (TCAD) simulations. Overall, the characterized pin diodes are tolerant to cumulative radiation at levels consistent with space applications such as geosynchronous weather satellites.

More Details

Response of Integrated Silicon Microwave pin Diodes to X-ray and Fast-Neutron Irradiation

IEEE Transactions on Nuclear Science

Teng, Jeffrey W.; Nergui, Delgermaa; Sepulveda-Ramos, Nelson E.; Tzintzarov, George N.; Mensah, Yaw; Cheon, Clifford D.; Rao, Sunil G.; Ringel, Brett; Gorchichko, Mariia; Li, Kan; Ying, Hanbin; Ildefonso, Adrian; Dodds, Nathaniel A.; Nowlin, Robert N.; Zhang, En X.; Fleetwood, Daniel M.; Cressler, John D.

Here, integrated silicon microwave pin diodes are exposed to 10-keV X-rays up to a dose of 2 Mrad(SiO2) and 14-MeV fast neutrons up to a fluence of 2.2×1013 cm-2. Changes in both DC leakage current and small-signal circuit components are examined. Degradation in performance due to total-ionizing dose is shown to be suppressed by non-quasi-static effects during RF operation. Tolerance to displacement damage from fast neutrons is also observed, which is explained using TCAD simulations. Overall, the characterized pin diodes are tolerant to cumulative radiation at levels consistent with space applications such as geosynchronous weather satellites.

More Details

DFF Layout Variations in CMOS SOI -Analysis of Hardening by Design Options

IEEE Transactions on Nuclear Science

Black, Jeffrey B.; Black, Dolores A.; Domme, Nicholas A.; Dodd, Paul E.; Griffin, Patrick J.; Nowlin, Robert N.; Trippe, James M.; Salas, Joseph G.; Reed, Robert A.; Weller, Robert A.; Tonigan, Andrew M.; Schrimpf, Ronald D.

Four D flip-flop (DFF) layouts were created from the same schematic in Sandia National Laboratories' CMOS7 silicon-on-insulator (SOI) process. Single-event upset (SEU) modeling and testing showed an improved response with the use of shallow (not fully bottomed) N-type metal-oxide-semiconductor field-effect transistors (NMOSFETs), extending the size of the drain implant and increasing the critical charge of the transmission gates in the circuit design and layout. This research also shows the importance of correctly modeling nodal capacitance, which is a major factor determining SEU critical charge. Accurate SEU models enable the understanding of the SEU vulnerabilities and how to make the design more robust.

More Details

Response of Waveguide-Integrated Germanium-on-Silicon p-i-n Photodiodes to Neutron Displacement Damage

IEEE Transactions on Nuclear Science

Goley, Patrick S.; Dodds, Nathaniel A.; Frounchi, Milad; Tzintzarov, George N.; Nowlin, Robert N.; Cressler, John D.

The effects of 14-MeV neutron displacement damage (DD) on waveguide (WG)-integrated germanium-on-silicon p-i-n photodiodes (PDs) for silicon photonics have been investigated up to the fluences of 7.5× 1012 n/cm2 (14 MeV) or 1.4× 1013 n1-MeVeq/cm2(Si). This article includes the measurements of dark current-voltage characteristics across temperature from 150 to 375 K, measurements of PD junction capacitance, spectral response measurements from 1260 to 1360 nm, and frequency-response measurements. The devices are found to be susceptible to DD-induced carrier removal effects; however, they also continue to operate without meaningful impact to performance for the DD dose levels examined. Since the PD test chips include silicon photonic integrated grating couplers and WGs, which carry the optical signal to the PD, some assessment of the impact of DD on these passive devices can also be inferred. This article does not examine the short-term annealing or transient behavior of the DD, and instead, it has only considered the lasting damage that remains after any initial period of room-temperature annealing.

More Details

Assessment of Commercial-Off-The-Shelf Electronics for use in a Short-Term Geostationary Satellite

Mahadeo, Dinesh M.; Rohwer, Lauren E.; Martinez, Marino M.; Nowlin, Robert N.

Commercial-Off-The-Shelf (COTS) electronics offer cutting-edge capability at lower prices compared to their space-grade counterparts. However, their use in space missions has been limited due to concerns around survivability in a space environment; COTS devices are not designed to survive the harsh radiation environment of space. Nonetheless, for space missions with short durations it may be possible to use COTS electronics. This study evaluates the use of several families of COTS electronics for a specific short-term mission. An assembled database including selected space grade and COTS components is discussed. High confidence FPGAs, microprocessors, and optocouplers COTS are identified. Medium confidence Memory, ADCs, DACs, power electronics, and RFMMICs COTS are also included, as well as testing to improve confidence in medium confidence parts. An experimental approach for evaluating tin whisker susceptibility for tin-leaded COTS components is described. Using COTS electronics in Short-Term Geostationary Satellites is feasible; this report includes enabling tools.

More Details
13 Results
13 Results