The National Center for Advanced Information Components Manufacturing (NCAICM) was established by congressional appropriation in the FY93 Defense Appropriation Bill. The Center, located at Sandia National Laboratories in Albuquerque, NM, is funded through the Advanced Research Projects Agency (ARPA). The technical focus of NCAICM is emissive flat panel displays and associated microelectronics, specifically targeting manufacturing issues such as materials, processes, equipment, and software tools. This Center is a new avenue of collaboration between ARPA and the Department of Energy (DOE). It will help the government meet its obligation to develop dual-use capabilities for the defense and civilian sectors of the economy and provide a new method for cooperation and collaboration between the federal government and American industry. In particular, one of NCAICM`s goals is to provide industry access to the broad resource base available at three DOE Defense Programs laboratories -- Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory.
The use of multi-source power systems, ``hybrids,`` is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The US Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.
Infrared (IR) reflection spectroscopy has been shown to be useful for making rapid and nondestructive quantitative determinations of B and P contents and film thickness for borophosphosilicate glass (BPSG) thin films on silicon monitor wafers. Preliminary data also show that similarly precise determinations can be made for BPSG films on device wafers.
A low pressure chemical vapor deposition (LPCVD) process for depositing W{sub X}B{sub (1-X)} films from WF{sub 6} and B{sub 2}H{sub 6} is described. The depositions were performed in a cold wall reactor on 6 in. Si wafers at 400C. During deposition, pressure was maintained at a fixed level in the range of 200 to 260 mTorr. Ratio of WF{sub 6}/B{sub 2}H{sub 6} was varied from 0.05 to 1.07. Carrier gas was either 100 sccm of Ar with a gas flow of 308 to 591 sccm, or 2000 sccm of Ar and 2000 sccm of H{sub 2} with the overall gas flow from 4213 to 4452 sccm. Two stable deposition regions were found separated by an unstable region that produced non-uniform films. The B-rich films produced in one of the stable deposition regions had W concentrations of 30 at.% and resistivities between 200 and 300 {mu}ohm{center_dot}cm. The W-rich films produced in the other stable deposition region had W concentrations of 80 at.% and resistivities of 100 {mu}ohm{center_dot}cm. As-deposited films had densities similar to bulk material of similar stoichiometry. Barrier properties of the films against diffusion of Cu to 700C in vacuum were measured by 4-point probe. Also, annealing was carried out to 900C in order to determine phases formed as the films crystallize. These studies indicate that W{sub X}B{sub (1-X)} films may be useful barriers in ULSI metallization applications.
A relatively high-speed I{sub DDQ} measurement circuit called QuiC-Mon is described. Depending upon IC settling times, upper measurement rates range from 50 kHz to 250 kHz at 100 nA resolution. It provides an inexpensive solution for fast, sensitive I{sub DDQ} measurements in CMOS IC wafer probe or packaged part production testing.
Sandia National Laboratories operates the Primary Standards Laboratory for the Department of Energy, Albuquerque Operations Office (DOE/AL). This report summarizes metrology activities that received emphasis in the first half of 1993 and provides information pertinent to the operation of the DOE/AL system-wide Standards and Calibration Program.
Sandia`s mission to explore technology that enhances US nuclear weapons capabilities has been the primary impetus for the development of a class of inertial measurement units not available commercially. The newest member of the family is the Ring Laser Gyro Assembly. The product of a five-year joint effort by Sandia and Honeywell`s Space and Strategic Systems Operation, the RLGA is a small, one-nautical-mile-per-hour-class inertial measurement unit that consumes only 16 watts - attributes that are important to a guidance and control capability for new or existing weapons. These same attributes led the Central Inertial Guidance Test Facility at Holloman Air Force Base to select the RLGA for their newest test instrumentation pod. The RLGA sensor assembly is composed of three Honeywell ring laser gyroscopes and three Sundstrand Data Control accelerometers that are selected from three types according to the user`s acceleration range and accuracy needs.
The objectives of this program are (1) to use and refine a basinal analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteritics of natural fracture systems for their use in completion, stimulation and production operations. Continuing work on this project has demonstrated that natural fracture systems and their flow characteristics can be defined by a thorough study of well and outcrop data within a basin. Outcrop data provides key information on fracture sets and lithologic controls, but some fracture sets found in the outcrop may not exist at depth. Well log and core data provide the important reservoir information to obtain the correct synthesis of the fracture data. In situ stress information is then linked with the natural fracture studies to define permeability anisotropy and stimulation effectiveness. All of these elements require field data, and in the cases of logs, core, and well test data, the cooperation of an operator.
The magnetic and structural phase diagrams of the La{sub 2}CuO{sub 4+{delta}} system and the La{sub 2-x}Sr{sub x}CuO{sub 4+{delta}} are reviewed, with emphasis on recent results obtained from magnetic and structural neutron diffraction, thermogravimetric analysis, iodometric titration, magnetic susceptibility {chi}(T), and {sup 129}La nuclear quadrupole resonance (NQR) measurements.
The authors employ NMR and NQR spectroscopy as probes of local structure and charge environments in metallic La{sub 2}CuO{sub 4+{delta}} ({Tc} = 38 K). They discuss the effect of annealing the sample at various temperatures T{sub a} ({Tc} < T{sub a} < 300K) on the superconducting {Tc}. The dependence of {Tc} on annealing indicates that annealing allows the development of structural order which is important for {Tc}. The {sup 139}La quadrupole frequency, {nu}{sub Q} is smaller than in undoped materials. This is unexpected and may indicate a smaller charge on the apex oxygen in the doped material and thus a different distribution of charge between the La-O layer to the planes. The further, rapid decrease in {nu}{sub Q} just above {Tc} indicates that temperature dependent charge redistribution is occurring. The presence of doped holes induces a distribution of displacements of the apex oxygen off of the vertical La-Cu bond axis. These vary from zero to the value observed in lightly doped (antiferromagnetic) La{sub 2}CuO{sub 4+{delta}}. These measurements demonstrate a striking degree of inhomogeneity in the crystal structure of the La-O layer. Copper NQR spectroscopy shows that there are two distinct copper sites in the CuO{sub 2} planes and thus that either the structure or the charge distribution in the planes is inhomogeneous as well. These inhomogeneities are the intrinsic response of the crystal to doped holes; they are not the result of distortions of the lattice due to the presence of interstitial oxygen atoms.
Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.
In this note the authors describe the results of some tests of the message-passing performance of the Intel Paragon. These tests have been carried out under both the Intel-supplied OSF/1 operating system with an NX library, and also under an operating system called SUNMOS (Sandia UNM Operating System). For comparison with the previous generation of Intel machines, they have also included the results on the Intel Touchstone Delta. The source code used for these tests is identical for all systems. As a result of these tests, the authors can conclude that SUNMOS demonstrates that the Intel Paragon hardware is capable of very high bandwidth communication, and that the message coprocessor on Paragon nodes can be used to give quite respectable latencies. Further tuning can be expected to yield even better performance.
This paper briefly describes an ongoing project designed to assess the uncertainty in offsite radiological consequence calculations of hypothetical accidents in commercial nuclear power plants. This project is supported jointly by the Commission of European Communities (CEC) and the US Nuclear Regulatory Commission (USNRC). Both commissions have expressed an interest in assessing the uncertainty in consequence calculations used for risk assessments and regulatory purposes.
This paper presents a prototype system developed at Sandia National Laboratories to create and verify computer-generated graphical models of remote physical environments. The goal of the system is to create an interface between an operator and a computer vision system so that graphical models can be created interactively. Virtual reality and telepresence are used to allow interaction between the operator, computer, and remote environment. A stereo view of the remote environment is produced by two CCD cameras. The cameras are mounted on a three degree-of-freedom platform which is slaved to a mechanically-tracked, stereoscopic viewing device. This gives the operator a sense of immersion in the physical environment. The stereo video is enhanced by overlaying the graphical model onto it. Overlay of the graphical model onto the stereo video allows visual verification of graphical models. Creation of a graphical model is accomplished by allowing the operator to assist the computer in modeling. The operator controls a 3-D cursor to mark objects to be modeled. The computer then automatically extracts positional and geometric information about the object and creates the graphical model.
The fields of reliability analysis and risk assessment have grown dramatically since the 1970s. There are now bodies of literature and standard practices which cover quantitative aspects of system analysis such as failure rate and repair models, fault and event tree generation, minimal cut sets, classical and Bayesian analysis of reliability, component and system testing techniques, decomposition methods, etc. In spite of the growth in the sophistication of reliability models, however, little has been done to integrate optimization models within a reliability analysis framework. That is, often reliability models focus on characterization of system structure in terms of topology and failure/availability characteristics of components. A number of approaches have been proposed to help identify the components of a system that have the largest influence on overall system reliability. While this may help rank order the components, it does not necessarily help a system design team identify which components they should improve to optimize overall reliability (it may be cheaper and more effective to focus on improving two or three components of smaller importance than one component of larger importance). In this paper, we present an optimization model that identifies the components to be improved to maximize the increase in system MTBF, subject to a fixed budget constraint. A dual formulation of the model is to minimize cost, subject to achieving a certain level of system reliability.
In the detailed phenomenological event trees used in recent Level III PRA analyses questions arise about the possible outcomes of events for which the underlying physics is not well understood and where the initial and boundary conditions are uncertain. Examples of the types of events being analyzed are: What is the containment failure mode?, Is them a large in-vessel steam explosion?, How much H{sub 2}, CO, and CO{sub 2} are produced during core-concrete interactions? The outcomes of each of these questions must be defined based on an understanding of the basic physics of the phenomena and the level of detail of the probabilistic analysis. Many of these phenomena have never occurred since severe reactor accidents are extremely rare events. The only information we have about these phenomena comes from four basic sources: general theoretical knowledge, limited experimental results a few actual events, and various models of the phenomena. All of these phenomena have significant uncertainty arising from three basic sources: level of detail, initial and boundary conditions, and lack of knowledge. Since it is not possible to conduct enough full scale tests to generate a set of ``objective`` relative frequencies, the probabilities, therefore, will have to be ``subjective`` and generated based on expert knowledge. In assessing the conditional probabilities of the various possible outcomes of an event during an accident, the expert must amalgamate his knowledge with the level of detail being used in the PRA analysis to generate a set of probabilities for the defined set of outcomes. It is often convenient for an expert to formulate his opinion in terms of expecting to see n{sub i} occurrences of outcome E{sub i} in N occurrences of event E. The order of the outcomes is typically not important because the individual trials are viewed as being independent of one another.
In many science and engineering applications, there is an interest in predicting the outputs of a process for given levels of inputs. In order to develop a model, one could run the process (or a simulation of the process) at a number of points (a point would be one run at one set of possible input values) and observe the values of the outputs at those points. There observations can be used to predict the values of the outputs for other values of the inputs. Since the outputs are a function of the inputs, we can generate a surface in the space of possible inputs and outputs. This surface is called a response surface. In some cases, collecting data needed to generate a response surface can e very expensive. Thus, in these cases, there is a powerful incentive to minimize the sample size while building better response surfaces. One such case is the semiconductor equipment manufacturing industry. Semiconductor manufacturing equipment is complex and expensive. Depending upon the type of equipment, the number of control parameters may range from 10 to 30 with perhaps 5 to 10 being important. Since a single run can cost hundreds or thousands of dollars, it is very important to have efficient methods for building response surfaces. A current approach to this problem is to do the experiment in two stages. First, a traditional design (such as fractional factorial) is used to screen variables. After deciding which variables are significant, additional runs of the experiment are conducted. The original runs and the new runs are used to build a model with the significant variables. However, the original (screening) runs are not as helpful for building the model as some other points might have been. This paper presents a point selection scheme that is more efficient than traditional designs.
This document is a compilation of various presentations from the Fourth DOE Industry/University/Lab Forum on Robotics for Environmental Restoration and Waste Management held in Albuquerque, New Mexico July 19--21, 1993. Separate abstracts were prepared for each presentation of this report.
A new version of the MACCS code (version 1.5.11.1) has been developed by Sandia National Laboratories under sponsorship of the US Nuclear Regulatory Commission. MACCS was developed to support evaluations of the off-site consequences from hypothetical severe accidents at commercial power plants. MACCS is the only current public domain code in the US that embodies all of the following modeling capabilities: (1) weather sampling using a year of recorded weather data; (2) mitigative actions such as evacuation, sheltering, relocation, decontamination, and interdiction; (3) economic costs of mitigative actions; (4) cloudshine, groundshine, and inhalation pathways as well as food and water ingestion; (5) calculation of both individual and societal doses to various organs; and (6) calculation of both acute (nonstochastic) and latent (stochastic) health effects and risks of health effects. All of the consequence measures may be fun generated in the form of a complementary cumulative distribution function (CCDF). The current version implements a revised cancer model consistent with recent reports such as BEIR V and ICRP 60. In addition, a number of error corrections and portability enhancements have been implemented. This report describes only the changes made in creating the new version. Users of the code will need to obtain the code`s original documentation, NUREG/CR-4691.
This manual describes the procedures and components necessary to produce a holographic interferogram of a flow field in the Sandia National Laboratories hypersonic wind tunnel. In contrast to classical interferometry, holographic interferometry records the amplitude and phase distribution of a lightwave passing through the flow field at some instant of time. This information can then be reconstructed outside the wind tunnel for visual analysis and digital processing, yielding precise characterizations of aerodynamic phenomena. The reconstruction and subsequent hologram image storage process is discussed, with particular attention paid to the digital image processor and the data reduction technique.
This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.
This report describes the requirements, designs, performance, and development histories for the T1576 power supply and the MC3935 rechargeable battery. These devices are used to power Permissive Action Link (PAL) ground controllers. The T1576 consists of a stainless steel container, one SA3553 connector, and one MC3935 battery. The MC3935 is a vented nickel/cadmium battery with 24 cells connected in series. It was designed to deliver 5.5 Amp-hours at 25{number_sign}C and the one-hour rate, with a nominal voltage of 28 V. The battery was designed to operate for 5 years or 500 full charge/discharge cycles. The power supply is expected to last indefinitely with replacement batteries and hardware.
MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRS. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze several of the IET direct containment heating experiments done at 1:10 linear scale in the Surtsey test facility at Sandia and at 1:40 linear scale in the corium-water thermal interactions (CWTI) COREXIT test facility at Argonne National Laboratory. These MELCOR calculations were done as an open post-test study, with both the experimental data and CONTAIN results available to guide the selection of code input. Basecase MELCOR results are compared to test data in order to evaluate the new HPME DCH model recently added in MELCOR version 1.8.2. The effect of various user-input parameters in the HPME model, which define both the initial debris source and the subsequent debris interaction, were investigated in sensitivity studies. In addition, several other non-default input modelling changes involving other MELCOR code packages were required in our IET assessment analyses in order to reproduce the observed experiment behavior. Several calculations were done to identify whether any numeric effects exist in our DCH IET assessment analyses.
The LIFE2 computer code is a fatigue/fracture analysis code that is specialized to the analysis of wind turbine components. The numerical formulation of the code uses a series of cycle count matrices to describe the cyclic stress states imposed upon the turbine. However, many structural analysis techniques yield frequency-domain stress spectra and a large body of experimental loads (stress) data is reported in the frequency domain. To permit the analysis of this class of data, a Fourier analysis is used to transform a frequency-domain spectrum to an equivalent time series suitable for rainflow counting by other modules in the code. This paper describes the algorithms incorporated into the code and their numerical implementation. Example problems are used to illustrate typical inputs and outputs.
MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data.
Modern nuclear safety themes depend on excluding unwanted energy from the components required for nuclear detonation. The exclusion region barrier is designed to provide protection from extraneous energy. The barrier must remain unbreached for both normal operations and accident events. Recent advances in computational capabilities permits more accurate modeling of barrier tearing during the extreme mechanical loadings associated with accidents. This report describes a methodology which employs design of experiments strategies coupled with finite element analyses and testing to produce results suitable for inclusion in a guide to design exclusion region barriers. The general approach was to employ finite element analyses to define the effect of materials property and geometric feature parameters on a generic barrier geometry. These parametric studies were based on design of experiments strategies. Four materials properties and six geometric features were included in the parameters. Selected geometries were tested to provide verification of the analyses. Statistical analysis of the results from the finite element analyses identified the important parameters (primarily the material property, true strain-to-failure, along with certain geometric characteristics) which were used to synthesize simplified equations and graphics suitable for inclusion into a guide for designers and safety analysts.
Experiments were done to determine effect of lattice damage on solubility and transport of deuterium (D) in silicon carbide. Beta SiC samples were irradiated with energetic ions to produce lattice damage, and were then soaked in D{sub 2} gas at 1000C. Concentration of D versus depth was then measured by nuclear reaction analysis. Very near the surface (<0.5{mu}m), concentration of D was larger in irradiated than in unirradiated, but beyond 1 {mu}m the D concentrations were similar ({approximately}20{plus_minus}10 atomic ppM), even though the damage extended to 2.2 {mu}m in most of the samples. Results from this study of ion-irradiated SiC together with our previous study of tritium migration in undamaged SiC point to the conclusion that uptake of D from gas into SiC occurs by transport along grain boundaries, whereas uptake of D into lattice damage produced by ion irradiation, and release of energetically implanted D both require permeation of D within grains which is much slower.
This report presents equations and computational algorithms for analyzing reliability of several forms of redundancy in repairable and non-repairable systems. For repairable systems, active, standby, and R of N redundancy with and without repair are treated. For non-repairable systems, active, standby, and R of N redundancy are addressed. These equations can be used to calculate mean time between failures, mean time to repair, and reliability for complex systems involving redundancy.
An eXplosive CHEMical kinetics code, XCHEM, has been developed to solve the reactive diffusion equations associated with thermal ignition of energetic materials. This method-of-lines code uses stiff numerical methods and adaptive meshing to resolve relevant combustion physics. Solution accuracy is maintained between multilayered materials consisting of blends of reactive components and/or inert materials. Phase change and variable properties are included in one-dimensional slab, cylindrical and spherical geometries. Temperature-dependent thermal properties have been incorporated and the modification of thermal conductivities to include decomposition effects are estimated using solid/gas volume fractions determined by species fractions. Gas transport properties, including high pressure corrections, have also been included. Time varying temperature, heat flux, convective and thermal radiation boundary conditions, and layer to layer contact resistances have also been implemented.
This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.
This report provides the results and analyses of a detailed survey undertaken in Summer 1993 to address integrated intrusion detection alarm annunciation and entry control system issues. This survey was undertaken as a first attempt toward beginning to answer questions about integrated systems and commercial capabilities to meet or partially meet US Department of Energy (DOE) site needs.
Hanford`s underground storage tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report. The IRG`s Preliminary Report assessed retrieval systems for underground storage tank wastes at Hanford in 1992. Westinghouse Hanford Company (WHC) concurred with the report`s recommendation that a tool should be developed for evaluating retrieval concepts. The report recommended that this tool include (1) important considerations identified previously by the IRG, (2) a means of documenting important decisions concerning retrieval systems, and (3) a focus on evaluations and assessments for the Tank Waste Remediation System (TWRS) and the Underground Storage Tank-Integrated Demonstration (UST-ID).
This document presents the objectives, accomplishments and activity plan for the Sandia Wind Energy Technology Program. The status of the current program is summarized and the planned FY94 activities are defined. Appendices detailing the cost, performance and schedule associated with these activities are also included. Funding requirements are given for several scenarios in order to reflect the impact of funding variability on program progress.
The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.
Small-polarons will only form in covalent crystals whose electronic halfbandwidths are sufficiently narrow, E{sub b} > W. The absence of small polaronic carriers in most covalent crystals presumably indicates that E{sub b} < W in these instances. However, evidence of small polarons is commonly found in disordered materials despite the estimates of E{sub b} and W not being significantly different from those of crystals. This result is ration by stating that disorder has slowed carrier motion enough to permit small-polaron formation. Recently the question of how disorder affects the stability of quasifree carriers with respect to small-polaron formation has been addressed. It is found that only modest energetic disorder is required to induce small-polaron formation. Here I first succinctly describe essential elements of this work. Second, I address the role of disorder on the adiabatic hopping motion of small polarons. Energy bands in most materials in which small-polarons are found are thought to be sufficiently wide (> a phonon energy) that the small-polaronic hopping is ``adiabatic.`` That is, the electronic carriers move between sites sufficienfly rapidly to follow the atomic motions. In this situation the small-polaron jump rates are independent of intersite separations. The magnitudes of the preexponential factors of the measured hopping mobilities typically support this view. Further support for this picture is found from experiments that determine weak dependences of the mobility on hydrostatic pressure.
The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs, improve efficiency, and increase flexibility without sacrificing quality. Sandia utilizes Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal design and manufacturing efforts. SL is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. SLS is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SL and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the Stereolithography and Selective Laser Sintering rapid prototyping machines.
Technical advances in lead-acid battery design have created new opportunities for battery systems in telecommunications, computer backup power and vehicle propulsion power. Now the lead-acid battery has the opportunity to become a major element in the mix of technologies used by electric utilities for several power quality and energy and resource management functions within the network. Since their introduction into industrial applications, Valve Regulated Lead-Acid (VRLA) batteries have received widespread acceptance and use in critical telecommunications and computer installations, and have developed over 10 years of reliable operational history. As further enhancements in performance, reliability and manufacturing processes are made, these VRLA batteries are expanding the role of battery-based energy storage systems within utility companies portfolios. This paper discusses the rationale and process of designing, optimizing and testing VRLA batteries for specific utility application requirements.
This paper describes an approach to developing a business plan which also serves as a quality plan and quality manual. It is organized following the major categories of the Malcolm Baldrige National Quality Award. It has been applied to the Measurement Standards Program Operations at Sandia National Laboratories.
Sandia National Laboratories (SNL) is engaged actively in research to improve the ability to accurately predict the response of engineered systems to thermal and structural abnormal environments. Abnormal environments that will be addressed in this paper include: fire, impact, and puncture by probes and fragments, as well as a combination of all of the above. Historically, SNL has demonstrated the survivability of engineered systems to abnormal environments using a balanced approach between numerical simulation and testing. It is necessary to determine the response of engineered systems in two cases: (1) to satisfy regulatory specifications, and (2) to enable quantification of a probabilistic risk assessment (PRA). In a regulatory case, numerical simulation of system response is generally used to guide the system design such that the system will respond satisfactorily to the specified regulatory abnormal environment. Testing is conducted at the regulatory abnormal environment to ensure compliance.
A wide variety of space-based system components have been qualified for use through neutron irradiation testing performed at the Sandia Pulsed Reactor (SPR) Facility. The SPR Facility is the operating location for two fast burst reactors, SPR II and SPR III, which have been used to induce neutron and gamma damage in electronic components and other materials for customers in the Department of Energy, Department of Defense, NASA,, and the private sector. In addition to the pulse mode of operation, during which peak fluxes of up to lel9 n/cm{sup 2}{minus}s are achieved, the steady state mode allows for the long term irradiation of components and systems in a fast neutron environment at a flux of up to 5e11 n/cm{sup 2}{minus}s. The SPR reactors are operated in a 9.2 meter diameter exposure cell, or Kiva, suitable for the irradiation of large test articles external to the reactors. Currently, a new upgraded version of SPR Ill (SPR IIIM) is in fabrication; a unique feature of SPR IIIM is its 19 cm (usable diameter) central irradiation cavity, the largest of any US fast burst reactor. An improved cooling system permits continuous operation at power levels in excess of 20 kW{sub t}. The SPR Facility is also the operating site for a critical assembly which was used to characterize prototypic fuels in arrays appropriate for the Space Nuclear Thermal Propulsion Program. Work continues on use of the facility to design, build, and operate critical assemblies for a diverse customer base.
The present political and environmental climate may slow the inevitable direct utilization of nuclear power in space. In the meantime, there is another approach for using nuclear energy for space power. That approach is to let nuclear energy generate a laser beam in a ground-based nuclear reactor-pumped laser (RPL), and then beam the optical energy into space. Potential space applications for a ground-based RPL include (1) illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, (2) beaming power to orbital transfer vehicles, (3) providing power (from earth) to a lunar base during the long lunar night, and (4) removing space debris. FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy with Sandia National Laboratories as the lead laboratory. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 0.585, 0.703, 0.725, 1.271, 1.733, 1.792, 2.032, 2.63, 2.65, and 3.37 {mu}m with intrinsic efficiency as high as 2.5%. Frequency-doubling the 1.733{minus}{mu}m line would yield a good match for photovoltaic arrays at 0.867 {mu}m. Preliminary designs of an RPL suitable for power beaming have been completed. The MWclass laser is fairly simple in construction, self-powered, closed-cycle (no exhaust gases), and modular. This paper describes the FALCON program accomplishments and power-beaming applications.
The production, suspension and transport of fluorocarbon particulates in rf discharges have been studied using in situ laser light scattering and ex situ chemical analysis. The time evolution of the spatial distribution of suspended particles was obtained by 2-D imaging of the scattered light. The chemistry of the discharge was varied by the use of a range of pure fluorocarbon gases and mixtures with argon, oxygen and hydrogen-containing molecules. The addition of hydrogen to a fluorocarbon discharge increases the rate of formation of particles although these powders are found by FTIR to contain negligible hydrogen. Particle formation rates correlate with polymer deposition rates and are independent of apparatus history. It is proposed that this is a clear example of gas-phase rather than surface processes leading to particle nucleation and growth.
The government electronics community faces the exciting challenge of entering into new of types of partnerships with the commercial electronics industry. Past interactions have been based primarily on the needs of government. Future interactions will be based more on the needs of industry, particularly its need to be competitive in commercial products. The most successful groups will be those most adept at forming this new type of ``win-win`` partner. Fortunately, both government and industry want to make these new partnerships successful. The government is driven by the necessity of establishing a common government/commercial manufacturing base and the desire to support US competitiveness. Industry is driven by the need to partner with government to remain competitive. Unfortunately, there are no detailed guides available to help government electronics groups and their sponsors in the Administration and Congress cross this uncharted terrain. The purpose of this paper is to share some ``lessons learned`` from the experiences of a government electronics group that has been active in establishing these new types of partnerships with industry. It is our hope that by sharing these lessons we will make it easier for other government groups to work with the commercial industry.
The author proposes using the collective Thomson scattering lineshape from ion acoustic waves to measure the spatial structure of local heat transport parameters and collisionality. Ion acoustic peak height asymmetry is used in conjunction with a recently developed model describing the effects of collisional and Landau damping contributions on the low-frequency electron density fluctuation spectrum to extract the relative electron drift. The local heat flux q{sub e} (proportional to drift) and the electron thermal conductivity {kappa}{sub e}{minus}q{sub e}/{gradient}T{sub e} would be inferred from experimentally determined temperature gradients {gradient}T{sub e}. Damping of the entropy wave component at zero mode frequency is shown to be an estimate of the ion thermal conductivity {kappa}{sub i}, and its visibility is a direct measure of the ion-ion mean free path {lambda}{sub ii}.
Sandia National Laboratories (SNL) is actively engaged in research to characterize abnormal environments, and to improve our capability to accurately predict the response of engineered systems to thermal and structural events. Abnormal environments, such as impact and fire, are complex and highly nonlinear phenomena which are difficult to model by computer simulation. Validation of computer results with full scale, high fidelity test data is required. The number of possible abnormal environments and the range of initial conditions are very large. Because full-scale tests are very costly, only a minimal number have been conducted. Scale model tests are often performed to span the range of abnormal environments and initial conditions unobtainable by full-scale testing. This paper will discuss testing capabilities at SNL, issues associated with thermal and structural scaling, and issues associated with extrapolating scale model data to full-scale system response. Situated a few minutes from Albuquerque, New Mexico, are the unique test facilities of Sandia National Laboratories. The testing complex is comprised of over 40 facilities which occupy over 40 square miles. Many of the facilities have been designed and built by SNL to simulate complex problems encountered in engineering analysis and design. The facilities can provide response measurements, under closely controlled conditions, to both verify mathematical models of engineered systems and satisfy design specifications.
Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: (1) a purely regulatory approach, or (2) by a Probabilistic Risk Assessment (PRA). This paper will address the latter of the two approaches.
We have found that aluminum alloys exhibit unusual passivity when exposed to alkaline Li-salt solutions. Observed passivity is due to the formation of a polycrystalline Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O film on the aluminum surface. This film is persistent in aggressive environments and provides a significant degree of corrosion protection. On this basis, we have developed a simple non-electrolytic method of forming corrosion resistant coatings in alkaline Li-salt solution. This process is procedurally similar to traditional conversion coating methods, offers desirable properties, and has a low toxic hazard. In this paper, coating methods, coating characterization, and coating properties are presented. Results from parallel test performed with a commercial chromate conversion coatings are presented for comparison.
This report discusses fourteen tests which were conducted to investigate the perforation of thin unreinforced concrete slabs. The 4340-steel projectile used in the test series is 50.8 mm in diameter, 355.6 mm in length, has a mass of 2.34 kg. and an ogive nose with caliber radius head of 3. The slabs, contained within steel culverts, are 1.52 m in diameter and consist of concrete with a nominal unconfined compressive strength of 38.2 MPa and maxima aggregate size of 9.5 mm. Slab thicknesses are 284.4, 254.0, 215.9 and 127.0 mm. Tests were conducted at impact velocities of about 313 m/s on all slab thicknesses and about 379 and 471 m/s on the 254.0-mm-thick slab. All tests were conducted at normal incidence to the slab. All tests were conducted at normal incidence to the slab. Information obtained from the tests used to determine the loading (deceleration) on the projectile during the perforation process, the velocity-displacement of the projectile as it perforated the slab, and the projectile position as damage occurred on the backface of the slab. The test projectile behaved essentially as a rigid body for all of the tests.
Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.
Transferring technology to the private sector to help improve the competitiveness of key US industries is now an official mission of the US Department of Energy`s (DOE) defense program national laboratories. We believe that national laboratories can play an important role in addressing US industrial competitiveness. Sandia is seeking to match laboratory strengths with industry-defined market needs in targeted industrial sectors. Sandia, like other national and federal laboratories, is developing an aggressive technology transfer program. This paper provides a brief review of our program and provides a snap-shot of where we are at today.
The Plasma Facing Components (PFC) Facilities Review Panel was chartered by the US Department of Energy, Office of Fusion Energy, ITER (International Thermonuclear Experimental Reactor) and Technology Division, to outline the program plan and identify the supporting test facilities that lead to reliable, long-lived plasma facing components for ITER. This report summarizes the panel`s findings and identifies the necessary and sufficient set of test facilities required for ITER PFC development.
The CORCON-Mod3 computer code was developed to mechanistically model the important core-concrete interaction phenomena, including those phenomena relevant to the assessment of containment failure and radionuclide release. The code can be applied to a wide range of severe accident scenarios and reactor plants. The code represents the current state of the art for simulating core debris interactions with concrete. This document comprises the user`s manual and gives a brief description of the models and the assumptions and limitations in the code. Also discussed are the input parameters and the code output. Two sample problems are also given.
Gas-gun impact tests were performed on twelve rocks and rock simulants pertinent to the HYDROPLUS nuclear yield measurement program: A variety of tuffs, rhyolites, carbonates, grouts, an epoxy-alumina mixture and quartzite permafrost samples recovered in an apparently preserved frozen state from northern Canada. The present report presents results for all of these materials except for the carbonates. Two classes of impact techniques were employed for measuring equation-of-state properties for these materials. Both use velocity interferometry diagnostics. One, employing a sample-in-projectile geometry, provides high-precision Hugoniot data and continuous release trajectories for dry or water-saturated materials. The majority of the experiments were performed with this geometry. The other, employing a sample-in-target geometry, provides loading path and Hugoniot data as well as limited release data. Uncertainties in the results have been estimated by analyzing the effects of errors in observables and ancillary material properties.
The PANDA code is used to construct tabular equations of state (EOS) for the detonation products of 24 explosives having CHNO compositions. These EOS, together with a reactive burn model, are used in numerical hydrocode calculations of cylinder tests. The predicted detonation properties and cylinder wall velocities are found to give very good agreement with experimental data. Calculations of flat plate acceleration tests for the HMX-based explosive LX14 are also made and shown to agree well with the measurements. The effects of the reaction zone on both the cylinder and flat plate tests are discussed. For TATB-based explosives, the differences between experiment and theory are consistently larger than for other compositions and may be due to nonideal (finite dimameter) behavior.
The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing head values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.
The iron content, phase constitution, and microstructure of electrodeposited iron-zinc alloy (EZA) coatings, deposited from chloride baths, is described for as-deposited and heat-treated conditions of coatings containing bulk iron contents of 6, 8, 10, and 13 w/o. The observed influence of current density upon iron content, which in turn influences the phase constitution and microstructure of the coatings, is reported. The microstructure, composed of non-equilibrium phases that have nanometer grain sizes, is illustrated and described with respect to iron content, crystallography, and morphology. As-deposited {eta} phase coatings undergo transformations through a sequence of metastable phases when heated. The sequence of phase transformations varies with iron content, but the mechanisms of phase transformation from the as-deposited eta phase to the metastable G phase was found to be similar in 6, 8, and 10 w/o Fe coatings. Microstructural, compositional, and crystallographic changes associated with this phase transformation are discussed.
Operations which involve the dexterous manipulation of materials in hazardous environments have, in the past, been completed directly by personnel. Use of humans in these environments is under increased scrutiny due to the high cost and low productivity associated with providing protective clothing and environments. Remote systems are needed to accomplish many tasks such as the assembly of structures at remote sites when exposure of personnel to radiation and other hazards is unacceptable. Traditional remote manual operations have, unfortunately, proven to have very low productivity when compared with human operators. Recent advances in the integration of sensors and computing into the control of remotely operated equipment have shown great promise for reducing the cost of remote systems while providing safer remote systems. This paper discusses applications of such advances to remote assembly operations.
We have measured the temperature dependence of the volatility of a wide variety of Static RAMS. The temperature dependence is directly related to the memory cell design and device processing or fabrication parameters. We have seen the volatility change by {approximately}10 orders of magnitude when the absolute temperature is changed by a factor of {approximately}2. We present physical reasons for such a large temperature dependence and derive an analytical model which accurately predicts the volatility. Neutron irradiation is seen to increase the low-temperature volatility.
This report documents an improved preparation of low density microcellular carbon as well as characterization of spatial homogeneity. The report also documents the process for preparing the nficrocellular carbon from poly(acrylonitrile) raw material. A microcellular polymer precursor (0.025 g/cc) is first prepared via a solution-based process and then pyrolyzed to produce the microcellular carbon in a monolithic form (0.05 g/cc). The process improvement developed in this study permits the pore structure of the n-ficrocellular polymer precursor and the microcellular carbon to be reproduced consistently in different laboratories. Pore structure is affected by the completeness of dissolution of the polymer raw material, which variable can be adjusted via dissolution temperature or particle size of the raw material. The second topic in this report involves determining the spatial fluctuation in mass density caused by periodic, millimeter-scale bands, known as `tree rings` visible on machined surfaces of the carbon monoliths. To measure the fluctuations, we developed a high precision, spatially resolved X-ray transmission technique. The periodic bands caused less than {plus_minus}2% variation of mass density in a microcellular carbon having average density 0.041 g/cc.
Eight companys have teamed with Sandia Labs to work on five projects as part of a cooperative effort to advance the state of the ar in synthetic-diamond drill bit design and manufacture. DBS (a Baroid Company), Dennis Tool Company, Hughes Christensen Company, Maurer Engineering, Megadiamond, Security Diamond Products, Slimdril International, and Smith International. Objective of each project is to develop advanced bit technology that results in new commercial products with longer bit life and higher penetration rates in hard formations. Each project explores a different approach to synthetic-diamond cutter and bit design and, consequently, uses different approaches to developing the technology. Each of these approaches builds or the respective companies` capabilities and current product interests. Sandia`s role is to assure integration of the individual projects into a coherent program and tc provide unique testing and analytical capabilities where needed. One additional company, Amoco Production Research, will provide synthetic-diamond drill bit research expertise and field testing services for each project in the program.
This program was developed to provide a computer based framework for analytical models developed by Forrestal and co-workers [1--2] to predict depth of penetration and temporal quantities for rigid non- deforming ogive-nose projectiles penetrating into a wide variety of targets. CATNIP provides results for penetration into semi-infinite targets, but does not provide for perforation events. The program has a graphical user interface to facilitate operation so that people unfamiliar with the analytical models can use the code with a minimum of training. CATNIP runs on Apple Macintosh computers using the Hypercard program. The Hypercard program is included with the system software on all Macintosh computers. A familiarity with the Macintosh use of pointing and clicking with the mouse is assumed for the use of this program.
Sandia has developed an advanced operational control system approach, called Graphical Programming, to design, program, and operate robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. Graphical Programming also provides an efficient and easy-to-use interface to traditional robot systems for use in setup and programming tasks. This paper provides an overview of the Graphical Programming approach and lists key features of Graphical Programming systems. Graphical Programming uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Programming Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control.
Part of the evaluation process that occurs during production of many complex components is performance testing of fabricated units as they are being produced. The results of these tests are used monitor the quality and reliability of the product and to contribute to the data base for reliability assessment. This paper presents an approach for designing plans for the evaluation of continuously produced product where the testing may be either destructive or non-destructive. The philosophy of the plans is to initially test a string of consecutive units at the beginning of production to show that the design and manufacturing processes conform with the required reliability. Once the product has passed the initial testing, a sampling phase is begun. If the product continues pass, a reduced sampling rate phase is used. Failures in the initial phase or the first sampling phase cause the plans to revert to the initial phase restart. If a failure occurs during the reduced sampling, the estimated failure rate is checked for concordance with the reliability requirement. This check is made to allow for continuation of sampling if the cumulative number of failures is consistent with the reliability requirement. A selection of values for the parameters of the plans and a rule for determining concordance are presented. The parameters of the plans are related to the AQL and LTPD concepts of acceptance sampling and the average number of defective units passed before a defective unit is sampled and detected.
Optoelectronics and photonics hold great potential for high data-rate communication and computing. Wide using in computing applications was limited first by device technologies and now suffers due to the need for high-precision, mass-produced packaging. The use of phontons as a medium of communication and control implies a unique set of packaging constraints that was not present in traditional telecommunications applications. The state-of-the-art in optoelectronic packaging is now driven by microelectric techniques that have potential for low cost and high volume manufacturing.
Inside this issue various short articles on current testing technology research at Sandia National Laboratories. New techniques of imaging currents in integrated circuits are described. Geomaterials testing is improved with true axial loading under high pressure. Pyroshock simulation tests electronics for space and defense. Insulated cameras get pictures of extremely hot burning fuels. Solar cell testing is improved via spectral response and laser scanning. And missile launching accomplishments are presented.
The segregation of Si impurities from the bulk to the surface of a low Cr Lot of Kovar{sup TM} (Fe-29Ni-17Co) has been investigated in order to determine the effects on the quality of the braze of Cu to these altered surfaces. It is found that oxides of Si are formed on the surface during wet hydrogen firing. Kinetics of this segregation process have been measured.
Sources of particles in a close-coupled electron cyclotron resonance (ECR) polysilicon plasma etch source include flaking of films deposited on chamber surfaces, and shedding of material from electrostatic wafer chucks. A large, episodic increase in the number of particles added to a wafer in a clean system is observed more frequently for a plasma-on than for a gas-only source condition. For polymer forming process conditions, particles were added to wafers by a polymer film which was observed to fracture and flake away from chamber surfaces. The presence of a plasma, especially when rf bias is applied to the wafer, caused more particles to be ejected from the walls and added to wafers than the gas-only condition; however, no significant influence was observed with different microwave powers. A study of effect of electrode temperatures on particles added showed that thermophoretic forces are not significant for this ECR configuration. Particles originating from the electrostatic chuck were observed to be deposited on wafers in much larger numbers in the presence of the plasma as compared to gas-only conditions.
In RF telemetry (TM) the allowable RF bandwidth limits the amount of data in the telemetered data set. Typically the data set is less than ideal to accommodate all aspects of a test. In the case of diagnostic data, the compromise often leaves insufficient diagnostic data when problems occur. As a solution, intelligence was designed into a TM, allowing it to adapt to changing data requirements. To minimize the computational requirements for an intelligent TM, a fuzzy logic inference engine was developed. This reference engine was simulated on a PC and then loaded into a TM hardware package for final testing.
This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.
The high conductivity provided by solder closure joints of component housings is sometimes required to ensure electrical shielding of the components contained within. However, using a soldering iron to produce the solder joints can lead to charring of the insulating materials within the housing. To overcome this problem, the localized heating characteristics of laser soldering can be exploited. Feasibility of laser soldering Sn plated brass housings with a CW Nd:YAG laser has been investigated. It has been determined that laser soldering of these housings using a low solids solder flux is a viable technique and will minimize the amount of heat input to the enclosed electronic components. Metallographic analysis has shown good wetting of the solder on the housing components. Accelerated aging experiments indicate that no significant corrosion potential due to solder flux residues exists. Although a low solids flux was used to make the joints, initial results indicate that a fluxless technique can be developed to eliminate fluxes completely.
A comprehensive environment, safety and health (ES&H) program allocates an extensive portion of its resources to information collection, management, and manipulation. Much of these resources are difficult to obtain and even more costly to ensure that they are sufficiently accurate; however, a system which collects information at the point which a process begins or a material enters a facility and maintains that information throughout its entire life-cycle is a more efficient approach to providing the data necessary to meet ES&H requirements. These data requirements for all the various groups within an ES&H program are associated with the properties and interactions among materials, personnel, facilities, hazards, waste and processes. Although each group is charged with addressing a particular aspect of these properties and interactions, the information they require can be aggregated into a coherent set of common data fields. It is these common data fields that the Cradle-to-Grave Tracking and Information System (CGTIS) is designed to satisfy. Research and development laboratories such as Sandia National Laboratories (SNL) are diverse in nature and, therefore, present a complex challenge to ES&H professionals. The remainder of this paper will describe the CGTIS as envisioned and implemented at SNL, define the requirements of a complete CGTIS, and review the current status of each system module at SNL.
In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.
Mechanistic models of aerosol decontamination by an overlying water pool during core debris/concrete interactions and spray removal of aerosols from a Mark I drywell atmosphere are developed. Eighteen uncertain features of the pool decontamination model and 19 uncertain features of the model for the rate coefficient of spray removal of aerosols are identified. Ranges for values of parameters that characterize these uncertain features of the models are established. Probability density functions for values within these ranges are assigned according to a set of rules. A Monte Carlo uncertainty analysis of the decontamination factor produced by water pools 30 and 50 cm deep and subcooled 0--70 K is performed. An uncertainty analysis for the rate constant of spray removal of aerosols is done for water fluxes of 0.25, 0.01, and 0.001 cm{sup 3} H{sub 2}O/cm{sup 2}-s and decontamination factors of 1.1, 2, 3.3, 10, 100, and 1000.
This paper describes the results of testing the MSR-20 radar and provides guidance on how this radar may be used to provide early detection and warning of approaching intruders beyond DOE facility site boundaries.
The US Department Energy`s Office of Technology Development has sponsored the development of generic robotics technologies for application to a wide range of remote systems. Of primary interest is the development of technologies which enable faster, safer, and cheaper cleanup of hazardous waste sites than is possible using conventional human contact or remote manual approaches. The development of model-based sensor-directed robot control approaches supports these goals by developing modular control technologies which reduce the time and cost of development by allowing reuse of control system software. In addition, the use of computer models improves the safety of remote site cleanup by allowing automated errors detection and recovery while reducing the time for technology development.
Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.
This report revises and updates the geologic site characterization report that was published in 1980. Revised structure maps and sections show interpretative differences in the dome shape and caprock structural contours, especially a major east-west trending shear zone, not mapped in the 1980 report. Excessive gas influx in Caverns 18 and 20 may be associated with this shear zone. Subsidence values at Bayou Choctaw are among the lowest in the SPR system, averaging only about 10 mm/yr but measurement and interpretation issues persist, as observed values often approximate measurement accuracy. Periodic, temporary flooding is a continuing concern because of the low site elevation (less than 10 ft), and this may intensify as future subsidence lowers the surface even further. Cavern 4 was re-sonared in 1992 and the profiles suggest that significant change has not occurred since 1980, thereby reducing the uncertainty of possible overburden collapse -- as occurred at Cavern 7 in 1954. Other potential integrity issues persist, such as the proximity of Cavern 20 to the dome edge, and the narrow web separating Caverns 15 and 17. Injection wells have been used for the disposal of brine but have been only marginally effective thus far; recompletions into more permeable lower Pleistocene gravels may be a practical way of increasing injection capacity and brinefield efficiency. Cavern storage space is limited on this already crowded dome, but 15 MMBBL could be gained by enlarging Cavern 19 and by constructing a new cavern beneath and slightly north of abandoned Cavern 13. Environmental issues center on the low site elevation: the backswamp environment combined with the potential for periodic flooding create conditions that will require continuing surveillance.
This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.
The Bibliographic Retrieval System (BARS) is a database management system specially designed to retrieve bibliographic references. Two databases are available, (i) the Sandia Shock Compression (SSC) database which contains over 5600 references to the literature related to stress waves in solids and their applications, and (ii) the Shock Physics Index (SPHINX) which includes over 6200 further references to stress waves in solids, material properties at intermediate and low rates, ballistic and hypervelocity impact, and explosive or shock fabrication methods. There is some overlap in the information in the two data bases.
The Bibliographic Retrieval System (BARS) is a database management system specially designed to store and retrieve bibliographic references and track documents. The system uses INGRES to manage this database and user interface. It uses forms for journal articles, books, conference proceedings, theses, technical reports, letters, memos, visual aids, as well as a miscellaneous form which can be used for data sets or any other material which can be assigned an access or file number. Sorted output resulting from flexible BOOLEAN searches can be printed or saved in files which can be inserted in reference lists for use with word processors.
A Sandia project currently uses an outdated Magnavox 6400 Global Positioning System (GPS) receiver as the core of its navigation system. The goal of this study was to analyze the performance of the current GPS receiver compared to newer, less expensive models and to make recommendations on how to improve the performance of the overall navigation system. This paper discusses the test methodology used to experimentally analyze the performance of different GPS receivers, the test results, and recommendations on how an upgrade should proceed. Appendices contain detailed information regarding the raw data, test hardware, and test software.
The MC4169 Double-Layer Capacitor Assembly was developed in response to a request from the B61 Systems organization to provide interim power for the B61 Common JTA Development. The project has been successfully completed, and Lot 1 has been built by MMSC/GEND. Development testing showed that this assembly met all design requirements. This report describes the design configuration, environmental testing, and aging, reliability, and safety studies done to ensure that the design requirements were met.
The procedures of vapor-deposition polymerization, spin coating and orientation-dependent etching have been employed to make free-standing thin films of Parylene-N, Parylene-D, polystyrene, polycarbonate and perfluoro-dimethyl-dioxole/tetrafluoroethylene copolymer (Teflon{reg_sign} AF-1600). The polymeric materials were vapor-deposited or spin-coated onto substrates of polished single-crystal silicon (wafers) and removed on frames of various shapes and sizes after application of adhesive and an etching process using potassium hydroxide. Thicknesses range from 2000{Angstrom} to 12000{Angstrom}.
This paper describes the major differences in the IDEFlX and NIAM ISDM information modeling methodologies and presents the different philosophies behind these methodologies. The IDEFlX methodology base document comes from the Integrated Information Support System (IISS) project sponsored by the US Air Force. The IISS project office was contacted and they supplied the referenced document as the best base description of this methodology. The NIAM ISDM methodology base documents present the general NIAM methodology. IDEFlX is a variant of the entity-attribute-relationship (E-A-R) approach to data modeling and although many other variants exist, the comparison presented here covers the common aspects of entity-relationship approaches. This comparison identifies and illustrates the differences in the two methodologies.
The effort to consolidate the ``islands of information`` within an enterprise -- to manage information at the enterprise level rather than the department or sub-system level -- is known by many names, such as ``Information Resource Management`` and ``Corporate Data Administration``. Here we will call it ``Enterprise Information Management`` (EIM). This effort is becoming increasingly vital as the need for shared information grows, yet it is plagued by costly, time-consuming efforts that produce reams of hard-to-maintain documentation. The results are difficult to integrate, measure, or apply. Management needs a tool that can integrate models from diverse modeling efforts into a global knowledge base, produce metrics to clarify the value of the integration process, and provide a short, traceable route between information models and their physical implementations. The natural-language emphasis of NIAM makes it an ideal candidate for this tool. When integrated with enterprise-wide data administration, the collection of metrics, CASE tools that produce application code, and automated support tools, NIAM can effectively manage multiple Universes of Discourse (UOD). Prototypes of automated support tools, ``Fact Manager`` and ``Fact Designer``, will be discussed.
At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled ``Semiconductor Technology: Workshop Working Group Reports,`` contained an overall roadmap for the technology characteristics envisioned in integrated circuits (ICs) for the period 1992--2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.
Quality management is more than an idea whose time has come, more than a passing fancy. Quality will be an imperative for competitiveness in the 21st century. Many large US firms have already implemented or are considering implementing total quarry management practices and processes. While most of the current literature on quality management focuses on large firms, quality management is arguably even more relevant to small businesses. As global markets become increasingly a reality in today`s world, small business managers and owners must focus on customer, satisfaction and continuous improvement if they are to survive the global competitive battle. Quality management may not be a luxury but rather, an essential focus for successful small business oompetitiveness. This paper examines quality management practices, awareness level, needs, and successes for small businesses in the Rocky Mountain region of the United States. This region is especially dependent upon small business competitiveness for economic survival and growth. A significant percent of total employment and sales in this region of the US is attributable to businesses classified as small. The specific purposes of the paper are: to report the results of a survey of small manufacturers` use, success, awareness, and interest in quality management practices and programs; to provide a profile of those manufacturers who have implemented quality management programs; and to describe a unique partnership between a state university and a large national lab designed to assist small business owners and managers in evaluating and implementing total quality management techniques.
This paper proposes a framework for the comprehensive analysis of complex problems in probabilistic structural mechanics. Tools that can be used to accurately estimate the probabilistic behavior of mechanical systems are discussed, and some of the techniques proposed in the paper are developed and used in the solution of a problem in nonlinear structural dynamics.
Sandia National Laboratories (SNL) Instrumentation Development Department was tasked by the Defense Nuclear Agency (DNA) to record data on Tektronix RTD720 Digitizers on the HUNTERS TROPHY field test conducted at the Nevada Test Site (NTS) on September 18, 1992. This report contains a overview and description of the computer hardware and software that was used to acquire, reduce, and display the data. The document is divided into two volumes: an overview and operators manual (Volume 1) and a maintenance manual (Volume 2).
An automated system to characterize cable systems at NTS has been developed to test the feasibility of such a system. A rack of electronic equipment including a fast pulse generator, digital sampling scope, coaxial switch matrix and GPIB controller was installed downhole at NTS for the Hunters Trophy event. It was used to test automated characterization. Recorded measurements of simulation and other instrument data were gathered to determine if a full scale automated system would be practical in full scale underground nuclear effects tests. The benefits of such a full scale system would be fewer personnel required downhole; more instrument control in the uphole recording room; faster acquisition of cable parameter data.
Recent work has shown that near-interfacial oxide traps that communicates with the underlaying Si (``border traps``) can play a significant role in determining MOS radiation response and long-term reliability. Thermally-stimulated-current 1/f noise, and frequency-dependent charge-pumping measurements have been used to estimate border-trap densities in MOS structures. These methods all require high-precision, low-noise measurements that are often difficult to perform and interpret. In this summary, we describe a new dual-transistor method to separate bulk-oxide-trap, interface-trap, and border-trap densities in irradiated MOS transistors that requires only standard threshold-voltage and high-frequency charge-pumping measurements.
A new package for the air transport of hazardous materials is currently being developed in the Transportation Systems Department at Sandia National Laboratories. The baseline design has a unique impact limiter which uses layers of aluminum screen wire and aramid cloth fabric. A primary motivation for selecting this unusual combination of materials is the need for the impact limiter to not only limit the amount of load transmitted to the primary container but also remain in place during impact events so that it provides a thermal barrier during a subsequent fire. A series of uniaxial and confined compression tests indicated that the layered material does not behave like other well characterized materials. No existing constitutive models were able to satisfactorily capture the behavior of the layered material; thus, a new plasticity model was developed. The new material model was then used to characterize the response of air transport packages with layered impact limiters to hypothetical accidental impact events. Responses predicted by these analyses compared favorably with experiments at Sandia`s rocket sled test facility in which a one-fourth scale package was subjected to side and end impacts at velocities of 428 and 650 fps, respectively.
This report provides an overview of the containers that are currently stored at Pantex and available for use in response to an accident or for use in any other application where a sealed containment vessel and accident resistant overpack may be needed.
Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a tensile fracture of welded tuff from Yucca Mountain. The objective of these tests was to examine the effect of cyclic loading on joint shear behavior under different boundary conditions. The shear tests were performed under either different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN) or constant normal stiffness ranging between 14.8 and 187.5 kips/in (25.9 and 328.1 kn/cm) . Bach test in the two categories consisted of five cycles of forward and reverse shear. Normal compression tests were also performed both before and after each shear experiment to measure changes in joint normal deformability. In order to quantify fracture surface damage during shear, fracture-surface fractal dimensions were obtained from measurements before and after shear.
Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff from Yucca Mountain to test the graphical load-displacement analysis method proposed by Saeb (1989) and Amadei and Saeb (1990). Based on the results of shear tests conducted on several joint replicas under different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN), the shear behavior of joint replicas under constant normal stiffness ranging between 14.8 and 187.5 kips/in. (25.9 and 328.1 kN/cm) was predicted by using the graphical method. The predictions were compared to the results of actual shear tests conducted for the same range of constant normal stiffness. In general, a good agreement was found between the predicted and the observed shear behavior.
The task of routing a 2-relation on an n-processor completely connected optical communication parallel computer (OCPC) is considered. A lower bound is presented that applies to any randomized distributed algorithm for this task: specifically, it is shown that the expected number of steps required to route a 2-relation is {Omega}({radical} log log n) in the worst case. For comparison, the best upper bound known is O(log log n).
Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US. The operating license of the first of these plants will expire in the year 2000; one third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: (1) establishment of the regulations, technical standards, and procedures for the preparation and review of a license renewal application; (2) development, verification, and validation of the various technical criteria and bases for needed monitoring, refurbishment, or replacement of plant equipment; and (3) demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE`s Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues, including degradation of long-lived components, reactor pressure vessel (RPV) embrittlement management approaches, and analytical methodologies to characterize RPV integrity.
The Weapons Evaluation Test Laboratory (WETL), operated by Sandia Laboratories at the Pantex Plant in Amarillo, Texas, is engaged primarily in the testing of weapon systems in the stockpile or of newly produced weapon systems for the Sandia Surety Assessment Center. However, the WETL`s unique testing equipment and data-handling facilities are frequently used to serve other organizations. Service to other organizations includes performing special tests on weapon components, subassemblies, and systems for purposes such as basic development and specific problem investigation. The WETL staff also sends equipment to other laboratories for specific tests that cannot be performed at Pantex. For example, we modified and sent equipment to Brookhaven National Laboratory for testing with their Neutral Particle Beam. WETL supplied the engineering expertise to accomplish the needed modifications to the equipment and the technicians to help perform many special tests at Brookhaven. A variety of testing is possible within the WETL, including: Accelerometer, decelerometer, and G-switch g-level/closure testing; Neutron generator performance testing; weapon systems developmental tests; weapon system component testing; weapon system failure-mode-duplication tests; simultaneity measurements; environmental extreme testing; parachute deployment testing; permissive action link (PAL) testing and trajectory-sensing signal generator (TSSG) testing. WETL`s existing equipment configurations do not restrict the testing performed at the WETL. Equipment and facilities are adapted to specific requirements. The WETL`s facilities can often eliminate the need to build or acquire new test equipment, thereby saving time and expense.
This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.
Any advance beyond the density of standard 2D Multichip Modules (MCM) will require a vertical interconnect technology that can produce reliable area array interconnection with small feature sizes. Laser drilled vertical vias have been controllably produced in standard silicon (Si) wafers down to 0.035mm (0.0014 inches) in diameter. Several laser systems and their system parameters have been explored to determine the optimum parametric set for repeatable vias in Si. The vias produced have exhibited clean smooth interior surfaces with an aspect ratio of up to 20:1 with little or no taper. All laser systems used, their system parameters, design modifications, theory of operation, and drilling results are discussed.
Properties of the ionosphere are reviewed along with its correlations with other geophysical phenomena and with applications of ionospheric studies to communication, navigation, and surveillance systems. Computer tomography is identified as a method to determine the detailed, three-dimensional distribution of electron density within the ionosphere. Several tomography methods are described, with a basic approach illustrated by an example. Limitations are identified.
A method is presented to unfold the two-dimensional vertical structure in electron density by using data on the total electron content for a series of paths through the ionosphere. The method uses a set of orthonormal basis functions to represent the vertical structure and takes advantage of curved paths and the eikonical equation to reduce the number of iterations required for a solution. Curved paths allow a more thorough probing of the ionosphere with a given set of transmitter and receiver positions. The approach can be directly extended to more complex geometries.
This memorandum is a synopsis of the description and operation of the equipment used and the events occurring during the calibration of various accelerometers at the Dropball Station.
An Ion Mobility Spectrometer (IMS) was used to determine the detection limits of RDX and TNT on six different substrates. The preparation of the explosive deposits on the surfaces is examined as well as effects due to the size, uniformity, method of application, and time that a deposit has been on a surface. Sampling methods are discussed along with effects of the surface topology. The transfer of explosives from a hand to a surface, and methods to reduce the detection limits are presented.
Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, calibration Mach number and Reynolds number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-stream Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for nine fundamental aerodynamic ratios, most of which relate free-stream test conditions (pressure, temperature, density or velocity) to a reference condition. Tables of the ratios, R, absolute sensitivity coefficients, {partial_derivative}R/{partial_derivative}M{infinity}, and relative sensitivity coefficients, (M{infinity}/R) ({partial_derivative}R/{partial_derivative}M{infinity}), are provided as functions of M{infinity}.
Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.
The Authenticated Tracking and Monitoring System (ATMS) has been designed to address the need for global monitoring of the status and location of proliferation-sensitive items. Conceived to utilize the proposed Global Verification and Location System (GVLS) satellite link, ATMS could use the existing International Maritime Satellite commercial communication system until GVLS is operational. The ATMS concept uses sensor packs to monitor items and environmental conditions, collects a variety of events data through a sensor processing unit, and transmits the data to a satellite, which then sends data to ground stations. Authentication and encryption algorithms will be used to secure the data. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. This paper also discusses a possible proof-of-concept system demonstration.
An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small (Macrostatistical Hydrodynamics). First, we describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. We suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. We also describe data from experiments in which the detailed fluctuations of a falling ball`s velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, we briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about the microstructure and boundary effects in concentrated suspensions.
Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.
This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.
MIMD massively parallel computers promise unique power and flexibility for engineering and scientific simulations. In this paper we review the development of a number of software methods and algorithms for scientific and engineering problems which are helping to realize that promise. We discuss new domain decomposition, load balancing, data layout and communications methods applicable to simulations in a broad range of technical field including signal processing, multi-dimensional structural and fluid mechanics, materials science, and chemical and biological systems.
In this paper we describe an algorithm for generating virtual forces in a bilateral teleoperator system. The virtual forces are generated from a world model and are used to provide real-time obstacle avoidance and guidance capabilities. The algorithm requires that the slaves tool and every object in the environment be decomposed into convex polyhedral Primitives. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert`s polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summed and applied to the manipulator/teleoperator system. Experimental results validate the whole approach, showing that it is possible to compute the algorithm and generate realistic, useful psuedo forces for a bilateral teleoperator system using standard VME bus hardware.
Hydropyrolysis is potentially an attractive means for the production of synthetic fuels and chemical feedstocks from coals. It offers a simpler process configuration than traditional direct liquefaction with a higher throughput and avoids problems with liquid (tar)-solids (residue) separation. Recent evaluations of coal liquefaction processes have concluded that, provided 50% or more distillable liquids can be produced, hydropyrolysis will be a viable alternative to the traditional vehicle solvent-based processes. For low-rank coals, hydrogenation catalysts are much less effective than for their bituminous counterparts with the increases in tar yields being typically less than 10% daf coal{sup 6}. Nonetheless, without catalyst, the tar yields of 40--50% at 150 bar pressure are appreciably higher than for bituminous coals. In this investigation, tests have been conducted at temperatures up to 600{degrees}C and using an extremely low heating rate of 5{degrees}C/min on the Wyodak Argonne Premium Coal Sample (APCS) and the high-sulfur Mequinenza and Rasa lignites to ascertain whether tar yields could be further increased without catalyst. It was initially considered that the tar yields for low rank coals are limited by the fact that retrogressive reactions, particularly those involving phenolic and carboxylic moities, are more prevalent than for bituminous coals. Data obtained indicates that low heating rates do, in fact, improve the conversion for low-rank coals.
The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.
To deliver high bandwidth, a ubiquitous inter-/intra-building cable plant consisting of single mode and multimode fiber as well as twisted pair copper is required. The selection of the ``glue`` to transport and interconnect distributed LANs with central facility resources over a pervasive cable plant is the focus of this paper. A description of the traditional problems that must be overcome to provide very high bandwidth beyond the narrow confines of a computer center is given. The applicability of Asynchronous Transfer Mode (ATM) switching (interconnection) and Synchronous Optical NETwork (SONET) (transport) for high bandwidth delivery is described using the environment and requirements of Sandia National Laboratories. Other methods for distributing high data rates are compared and contrasted. Sandia is implementing a standards based foundation utilizing a pervasive single mode fiber cable plant, SONET transport, and ATM switching to meet the goals of gigabit networking.
The intent of this report is to examine the performance of the Deployable Seismic Verification System (DSVS) developed by the Department of Energy (DOE) through its national laboratories to support monitoring of underground nuclear test treaties. A DSVS was installed at the Pinedale Seismic Research Facility (PSRF) near Boulder, Wyoming during 1991 and 1992. This includes a description of the system and the deployment site. System performance was studied by looking at four areas: system noise, seismic response, state of health (SOH) and operational capabilities.
The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.
This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.
Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.
Solid state silicon-29 nuclear magnetic resonance (NMR) spectroscopy has been used to characterize the formation of high pressure silica polymorphs and amorphous material associated with the shocked Coconino Sandstone from Meteor Crater, Arizona. Five samples of the sandstone were obtained from several locations at the crater to represent a range of shock conditions associated with the hypervelocity impact of a 30 m-diameter meteorite. The NMR spectra for these powdered materials exhibit peaks assigned to quartz, coesite, stishovite, and glass. A new resonance in two of the moderately shocked samples is also observed. This resonance has been identified as a densified form of amorphous silica with silicon in tetrahedra with one hydroxyl group. Such a phase is evidence for a shock-induced reaction between quartz and steam under high pressure conditions.
Sandia has developed an advanced operational control system approach, called Graphical Programming, to design and operate robot systems in unstructured environments. This Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. This approach uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Programming Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control. All of these capabilities when combined result in a flexible system which is readily able to meet the demands called for in construction automation. This paper describes the Graphical Programming approach, several example control systems that use Graphical Programming, key features necessary for implementing successful Graphical Programming systems, and specific examples of applying these systems to robotic operations.
High spatial resoslution x-ray microanalysis in the analytical electron microscope (AEM) can be used to determine chemical composition on spatial scales of < 50 nm. Simple scattering models have the drawback of being incapable of treating electron scattering in inhomogeneous specimens, such as at phase interfaces or grain boundary segregation. The best method for calculating electron scattering and x-ray generation function is by Mone Carlo methods. Two examples are discussed: a phase interface in an Fe-Ni-Cr alloy, and grain boundary segregation using a 0.3 nm Cu slab in a 25 nm Al film (the slab is parallel to incident electron beam). It is concluded that high spatial resolution x-ray microanalysis can achieve near atomic resolution, but that massively parallel Monte Carlo models for electron scattering and a well characterized electron beam are needed.
Under a Cooperative Agreement between the Commission of European Communities (CEC) and the U. S. Department of Energy (DOE), the Joint Research Centre, (JRC) ISPRA, and Sandia National Laboratories (SNL) have been cooperating in the development of Containment and Surveillance equipment for a number of years. With recent technology advancements, this cooperation is expanding into the areas of Data Authentication, Safeguards Data Networks, Integrated Systems, and Image Processing. This paper will describe recently expanded efforts in connecting the Integrated Monitoring System designed by SNL to the Computer Aided Video Surveillance System designed by JRC. An SNL Modular Video Authentication System was furnished to test in the video circuitry of the Computer Aided Video Surveillance System. The two systems will remain at JRC for demonstrations, training, and future development activities.
Effective application of pan-tilt cameras in alarm assessment systems requires that the overall system design be such that any threat for which the system is designed will be within the field of view of the camera for a sufficiently long time for the assessment of the alarm to be performed. The assessment of alarms in large, unobstructed areas requires a different type of analysis than traditionally used for clear zones between fences along fixed perimeters where an intruder`s possible location is well defined. This paper presents a design methodology which integrates the threat characteristics, sensor detection pattern, system response time, and optics geometry considerations to identify all feasible locations for camera placement for effective assessment of large, unobstructed areas. The methodology also can be used to evaluate tradeoffs among these various considerations to improve candidate designs.
In this study we have developed the techniques to investigate the hydrodynamic response of high-strength ceramics by mixing these powders with copper powder, preparing compacts, and performing shock compression tests on these mixtures. Hydrodynamics properties of silicon carbide, titanium diboride, and boron carbide to 30 GPa were examined by this method, and hydrodynamic compression data for these ceramics have been determined. We have concluded, however, that the measurement method is sensitive to sample preparation and uncertainties in shock wave measurements. Application of the experimental technique is difficult and further efforts are needed.
Developments are reported in both experimental and numerical capabilities for characterizing the debris spray produced in penetration events. We have performed a series of high-velocity experiments specifically designed to examine the fragmentation of the projectile during impact. High-strength, well-characterized steel spheres (6.35 mm diameter) were launched with a two-stage light-gas gun to velocities in the range of 3 to 5 km/s. Normal impact with PMMA plates, thicknesses of 0.6 to 11 mm, applied impulsive loads of various amplitudes and durations to the steel sphere. Multiple flash radiography diagnostics and recovery techniques were used to assess size, velocity, trajectory and statistics of the impact-induced fragment debris. Damage modes to the primary target plate (plastic) and to a secondary target plate (aluminum) were also evaluated. Dynamic fragmentation theories, based on energy-balance principles, were used to evaluate local material deformation and fracture state information from CTH, a three-dimensional Eulerian solid dynamics shock wave propagation code. The local fragment characterization of the material defines a weighted fragment size distribution, and the sum of these distributions provides a composite particle size distribution for the steel sphere. The calculated axial and radial velocity changes agree well with experimental data, and the calculated fragment sizes are in qualitative agreement with the radiographic data. A secondary effort involved the experimental and computational analyses of normal and oblique copper ball impacts on steel target plates. High-resolution radiography and witness plate diagnostics provided impact motion and statistical fragment size data. CTH simulations were performed to test computational models and numerical methods.
Today`s integrated circuits are so complex that it is often necessary to have access to the layouts and schematics when performing voltage contrast, cross sectioning, light emission, mechanical probing, optical beam induced current, and even simple SEM and Optical Examination. To deal with these issues, Sandia National Laboratories is developing an advanced failure analysis laboratory networking scheme to provide computer control, layout navigation, schematic navigation, and report generation on each of the major pieces of failure analysis equipment. This concept is known as an Integrated Diagnostic Environment or IDE. An integrated diagnostic environment is an environment where failure analysis equipment is computer-controlled and linked by a high speed network. The network allows CAD databases to be shared between instruments, improving the failure analyst`s productivity on each analysis task. At Sandia, we are implementing this concept using SUN Sparcstation computers running Schlumberger`s IDE software. To date, we have incorporated our electron beam prober and light emission system into the environment. We will soon add our scanning optical microscope and focused ion beam system and eventually add our optical microscope and microprobe station into the network. There are a number of issues to consider when implementing an Integrated Diagnostic Environment; these are discussed in detail in this paper.
This paper describes the development and use of the Multi-Axis Seam racking (MAST) sensor for tracking seams or other features in real-time. Four independent, spatially-distributed electric fields are used to sense changes in the relative position of the sensor and the workpiece. The MAST sensor is very inexpensive compared with commercially available seam tracking sensors. It can be used in systems to perform cost-effective small-lot manufacturing operations in a faster, more consistent manner. The MAST sensor is used in an automated system for dispensing braze paste during a rocket nozzle fabrication process.
The ability for a communications network to realize arbitrary communications patterns can be expensive both in terms of hardware and in terms of system software. One might instead ask whether a system can be built which performs well for a given application program. In this paper we look at the question of when a set of communications patterns is suitable for fast realization on a given network. In particular we look at which patterns are realizable quickly on a mesh. Contrary to common wisdom, transpose is efficiently realizable on a mesh. However, some other important patterns such as shuffle are not.
The Milling Assistant (MA) programming system demonstrates the automated development of tool paths for Numerical Control (NC) machine tools. By integrating a Case-Based Reasoning decision processor with a commercial CAD/CAM software, intelligent tool path files for milled and point-to-point features can be created. The operational system is capable of reducing the time required to program a variety of parts and improving product quality by collecting and utilizing ``best of practice`` machining strategies.
The US Department of Energy (DOE) is sponsoring the Utility Battery Storage Systems Program at Sandia National Laboratories and its contractors. This program is specifically aimed at developing battery energy storage systems for electric utility applications commencing in the mid to late 1990s. One factory-integrated utility battery system and three battery technologies: sodium/sulfur, zinc/bromine, and lead-acid are being developed under this program. In the last few years the emphasis of this program has focused on battery system development. This emphasis has included greater interactions with utilities to define application requirements. Recent activities have identified specific applications of battery energy storage in certain utility systems and quantified the value of these applications to these utility companies. In part due to these activities, battery energy storage is no longer regarded by utilities as a load-leveling resource only, but as a multifunction, energy management resource.
The US Department of Energy is sponsoring the development of battery energy storage systems for electric utilities. An important part of this DOE program is the engineering of the battery subsystem. Because lower costs are possible and less space is required compared with conventional battery technologies, two advanced battery systems are being developed: sodium/sulfur and zinc/bromine. A brief description of the development approach being followed along with the current status of the sodium/sulfur technology is described in this paper. Of immediate relevance, a factory integrated modular sodium/sulfur system has been designed that incorporates many of the advantages of this technology. Each module (designated as NAS-P{sub AC}) combines a 600-kWh sodium/sulfur battery, a 300 kW power converter and a control system. In addition to the potential for low life-cycle cost, other specific benefits include excellent portability and an installed system-level footprint that is about 20% of an equivalent system using lead-acid batteries. The sodium/sulfur battery is designed to deliver its rated energy for 1500 cycles or 5 years of maintenance-free operation.
Sandia National Laboratories determined that the most effective method to address records management initiatives would be through a single, comprehensive facilities wide records inventory and retention schedule project. The logistic of such an undertaking (estimated at 425,000 linear feet) are demanding. The relatively short time frame required for completion and the project`s size called for sound, up front planning by Sandia and ultimately the support of an outside contractor for qualified resources to execute the plan.
Development of a high-temperature, superconducting, synchronous motor for large applications (>1000 HP) could offer significant electrical power savings for industrial users. Presently 60% of all electric power generated in the United States is converted by electric motors. A large part of two power is utilized by motors 1000 HP or larger. The use of high-temperature superconducting materials with critical temperatures above that of liquid nitrogen (77 K) in the field winding would reduce the losses in these motors significantly, and therefore, would have a definite impact on the electrical power usage in the US. These motors will be 1/3 to 1/2 the size of conventional motors of similar power and, thus, offer potential savings in materials and floor space. The cooling of the superconducting materials in the field windings of the rotor presents a unique application of cryogenic engineering. The rotational velocity results in significant radial pressure gradients that affect the flow distribution of the cryogen. The internal pressure fields can result in significant nonuniformities in the two-phase flow of the coolant. Due to the variable speed design, the flow distribution has the potential to change during operation. A multiphase-flow computer model of the cryogenic cooling is developed to calculate the boiling heat transfer and phase distribution of the nitrogen coolant in the motor. The model accounts for unequal phase velocities and nonuniform cooling requirements of the rotor. The unequal radial pressure gradients in the inlet and outlet headers result in a larger driving force for flow in the outer cooling channels. The effect of this must be accounted for in the design of the motor. Continuing improvements of the model will allow the investigation of the transient thermal issues associated with localized quenching of the superconducting components of the motor.
The deliverability of a reservoir depends primarily on its permeability, which, in many reservoirs, is controlled by a combination of natural fractures and the in situ stresses. Therefore it is important to be able to predict which parts of a basin are most likely to contain naturally fractured strata, what the characteristics of those fractures might be, and what the most likely in situ stresses are at a given location. This paper presents a set of geologic criteria that can be superimposed onto factors, such as levels of maturation and porosity development, in order to predict whether fractures are present once the likelihood of petroleum presence and reservoir development have been determined. Stress causes fracturing, but stresses are not permanent. A natural-fracture permeability pathway opened by one system of stresses may be held open by those stresses, or narrowed or even closed by changes of the stress to an oblique or normal orientation. The origin of stresses and stress anisotropies in a basin, the potential for stress to create natural fractures, and the causes of stress reorientation are examined in this paper. The appendices to this paper present specific techniques for exploiting and characterizing natural fractures, for measuring the present-day in situ stresses, and for reconstructing a computerized stress history for a basin.
By extracting and analyzing measurement (variables) data from portal metal detectors whenever possible instead of the more typical ``alarm``/``no-alarm`` (attributes or binomial) data, we can be more informed about metal detector health with fewer tests. This testing methodology discussed in this report is an alternative to the typical binomial testing and in many ways is far superior.
Varistor material is currently supplied by a single commercial source. The chem-prep varistor process was developed as a backup/replacement. With the transfer of the process to the production facility, studies were made to verify that the process is stable in manufacturing. Process variables are the precursors oxalic acid, NaOH, and ZnCl{sub 2}. Process stability was determined by comparing assay uncertainty region with precipitant/ZnCl{sub 2} compositional region meeting electrical and physical property specifications. Assay variability was assessed by conducting a round robin; standard deviations of repeated assays of the same sample was 0.1 wt% by the same labs; 0.1-0.4 wt% among laboratories. A mixture experiment was then conducted to assess the effects of the precipitants/ZnCl{sub 2} on breakdown field, nonlinearity coefficient, and bulk density. Results indicate that the chem-prep process can be stable; however the nominal target composition was on the edge of the composition region, and it was moved to the center of the large region with acceptable electrical and physical properties. Tests of unpotted component rods made from the new composition met all specifications. 8 refs, 10 figs, 10 tabs.
A summary is presented of the results of a number of studies conducted prior to March 1992 that have led to a conceptual model describing how the porosity (and therefore the permeability) of waste and backfill in a Waste Isolation Pilot Plant disposal room changes with time and also describes how results from calculations involving mathematical models of these processes are used to provide input into performance assessment of the repository. Included in the report are descriptions of essential material response or constitutive models that include the influence of gas generation and the response of simple gas-pressurized cracks and fractures in salt, marker beds, and clay seams. Two-dimensional versus three-dimensional disposal room configurations and descriptions of the differences between numerical codes are also discussed. Calculational results using the mathematical models for disposal room response are described, beginning with closure of empty rooms and becoming progressively more complex. More recent results address some of the effects of gas generation in a room containing waste and backfill and intersected by a gas permeable marker bed. Developments currently in progress to improve the evaluation of the disposal room performance are addressing the coupling between brine flow and closure and the two-dimensional capability for analyzing a complete panel of rooms. Next, a method is described for including disposal room closure results into performance assessment analyses that determine if the repository is in compliance with regulatory standards. The coupling is accomplished using closure surfaces that describe the relationship among porosity, total amount of gas in the repository, and time. A number of conclusions about room response and recommendations for further work are included throughout the report.
The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Transverse forces and torques due to energized coils are derived for displaced or tilted projectile elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot code and numerical solutions for the transverse motion are obtained. For the 20 meter navy launcher parameters we find that stability is achieved with a flyway spring constant of k {approx} 1{times} 10{sup 8} N/m{sup 2}. For k {approx} 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of I mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the Projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars.
Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability.
Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970`s. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle`s robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenges presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.
A numerical method to simulate viscous diffusion of vorticity using vortex blobs (i.e., without a grid) is presented. The method consists of casting the effects of viscous diffusion into an effective ``diffusion velocity`` at which vortex blobs convect. The diffusion velocity was proposed previously by Ogami and Akamatsu, but they did not consider the effects of the divergence of the diffusion velocity. In fact, the diffusion velocity is highly non-solenoidal, which significantly affects the area over which a vortex blob diffuses. A formulation is presented that relates the area expansion to the diffusion velocity divergence. By taking into account the area expansion, more accurate simulations of diffusion are obtained, as demonstrated by a comparison of numerical and analytical diffusion solutions. Results from simulations show that vortex areas expand significantly in regions of large vorticity gradients. As a result of the area expansion, adjacent vortices remain overlapped, thereby maintaining smooth solution fields. The non-solenoidal diffusion velocity method is easily implemented in vortex blob algorithms, thus facilitating the development of vortex methods to simulate flows with finite Reynolds numbers.
Designed experiments were employed to characterize a process for etching phosphorus doped polycrystalline silicon with HBr in a close-coupled ECR plasma reactor configured for 200 mm wafers. A fractional factorial screening experiment was employed to determine the principal input factors and the main etch effects. Linear models of the process responses indicate RF power, O{sub 2} flow rate, and the position of the resonance zone (with respect to the wafer) as the three strongest factors influencing process performance. Response surfaces generated using data from a follow-on response surface methodology (RSM) experiment predicted an optimum operating region characterized by relatively low RF power, a small O{sub 2} flow, and a resonance zone position close to the wafer. The optimized process demonstrated a polysilicon etch rate of 270 nm/min, an etch rate non-uniformity of 2.2% (1s), an etch selectivity to oxide greater than 100:1, and anisotropic profiles. Particle test results for the optimized process indicated that careful selection of the O{sub 2} fraction is required to avoid polymer deposition and particle formation.
Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Additional information about the 1992 PA is provided in other volumes. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions, the choice of parameters selected for sampling, and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect compliance with 40 CFR 191B are: drilling intensity, intrusion borehole permeability, halite and anhydrite permeabilities, radionuclide solubilities and distribution coefficients, fracture spacing in the Culebra Dolomite Member of the Rustler Formation, porosity of the Culebra, and spatial variability of Culebra transmissivity. Performance with respect to 40 CFR 191B is insensitive to uncertainty in other parameters; however, additional data are needed to confirm that reality lies within the assigned distributions.
Experiment results are presented for unconfined compressive strength and elastic moduli of tuffaceous rocks from Busted Butte near Yucca Mountain, Nevada. The data have been compiled for the Yucca Mountain Site Characterization Project Site and Engineering Properties Data Base. Experiments were conducted on water-saturated specimens of the potential nuclear waste repository horizon Topopah Spring Member tuff (thermal/mechanical unit TSw2). The influence of strain rate on mechanical properties of the tuff was examined by loading six specimens in uniaxial compression at a strain rate of 10{sup {minus}9} s{sup {minus}1}. The experiments performed under ambient pressure and temperature conditions and conformed to Technical Procedure 91, titled ``Unconfined Compression Experiments at 22{degrees}C and a Strain Rate of 10{sup {minus}9} s{sup {minus}1}.`` The mean and standard deviation values of ultimate strength, Young`s modulus and Poisson`s ratio determined from these experiments are 85.4{plus_minus}21.7 MPa, 33.9{plus_minus}4.6 GPa, and 0.09{plus_minus}0.07, respectively.
Thermomechanical models are being developed to support the design of an Exploratory Studies Facility (ESF) and a potential high-level nuclear waste repository at Yucca Mountain, Nevada. These models are used for preclosure design of underground openings, such as access drifts, emplacement drifts, and waste emplacement boreholes; and in support of postclosure issue resolution relating to waste canister performance, disturbance of the hydrological properties of the host rock, and overall system performance assessment. For both design and performance assessment, the purpose of using models in analyses is to better understand and quantify some phenomenon or process. Therefore, validation is an important process that must be pursued in conjunction with the development and application of models. The Site Characterization Plan (SCP) addressed some general aspects of model validation, but no specific approach has, as yet, been developed for either design or performance assessment models. This paper will discuss a proposed process for thermomechanical model validation and will focus on the use of laboratory and in situ experiments as part of the validation process. The process may be generic enough in nature that it could be applied to the validation of other types of models, for example, models of unsaturated hydrologic flow.
Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants.
Van Arsdall, Anne; Doran, Linda; Floyd, H.L.; Garber, Reeta A.; Goetsch, Robert S.; Leonard, Jim; Parrott, Lori K.
Sandia National Laboratories—a Department of Energy multiprogram national laboratory—has for over four decades applied its talents, tools, and techniques to solving technological problems of national scale. This publication provides information of interest about Sandia National Laboratories and the work being done there.
A radiological safety evaluation is performed to determine the impacts of Exploratory Studies Facility (ESF) design changes on the preclosure public radiological safety for a potential nuclear waste repository at Yucca Mountain, Nevada. Although the ESF design has undergone significant modification, incorporation of the modified design requires only modest changes to the conceptual repository configuration. To the extent feasible, the results of earlier safety evaluations presented in SAND84-2641, SAND88-7061, and SAND89-7024, which were based on the original ESF configuration, are compared with the results for the modified configuration. This comparison provides an estimate of the range of analysis uncertainty. This preliminary analysis indicates that there are no Q-scenarios, which are defined as those scenarios with a net occurrence probability of greater than 10{sup {minus}6}/yr and produce a radiological dose at the 5-km controlled area boundary of greater than 0.5 rem. The analysis yielded estimates for an underground accident of a probability of 3.8 {times} 10{sup {minus}15}/yr and a dose of 1.5 rem. For a surface-initiated accident, a probability of 1.5 {times} 10{sup {minus}12}/yr and a dose of 0.6 rem was estimated.
Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver.
Human Instrusion into the potential repository at Yucca Mountain, Nevada, was modeled in the Total-System Performance Assessment (``TSPA-91``) recently completed for the Yucca Mountain Site Characterization Project Office of the DOE. The scenario model assumed that the repository would be penetrated at random locations by a number of boreholes drilled using twentieth-century rotary drilling techniques.
This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed.
Sandia National Laboratories was requested to establish the FAA Aging Aircraft Nondestructive Inspection (NDI) Development and Demonstration Center. The Center is housed in a hangar at the Albuquerque International Airport and owns its own aged transport airplane. The Center`s work encompasses research and development in enhanced structural inspection. The goals of the Center are to: promote NDI technology development and maturation; help transfer new nondevelopment item technology to the hangar floor; validate NDI techniques; assess reliability or probability of detection of NDI processes. An important part of this project will be to make sure that the cost of implementation and operation of any technique is seriously considered and that techniques are usable in the field. Among the initial techniques to be evaluated are: enhanced visual, magneto-optic eddy current; coherent optics; ultrasonics; thermographics; eddy current scanners; experimental modal analysis. This project is a perfect example of how Development Testing draws on its own resources and teams up with others, as necessary, to get the job done. In this case, New Mexico State University and a private company, Science Applications International Corporation, are assisting.
Reconsolidated salt is a fundamental component of the permanent seals for the Waste Isolation Pilot Plant. As regulations are currently understood and seal concepts envisioned, emplaced salt is the sole long-term seal component designed to prevent the shafts from becoming preferred pathways for rating gases or liquids. Studies under way in support of the sealing function of emplaced salt include laboratory testing of crushed salt small-scale in situ tests, constitutive modeling of crushed salt, calculations of the opening responses during operation and closure, and design practicalities including emplacement techniques. This paper briefly summarizes aspects of these efforts and key areas of future work.
In the verification technology arena, there is a pressing need for surveillance and monitoring equipment that produces authentic, verifiable records of observed activities. Such a record provides the inspecting party with confidence that observed activities occurred as recorded, without undetected tampering or spoofing having taken place. The secure authenticated video equipment (SAVE) system provides an authenticated series of video images of an observed activity. Being self-contained and portable, it can be installed as a stand-alone surveillance system or used in conjunction with existing monitoring equipment in a non-invasive manner. Security is provided by a tamper-proof camera enclosure containing a private, electronic authentication key. Video data is transferred communication link consisting of a coaxial cable, fiber-optic link or other similar media. A video review station, located remotely from the camera, receives, validates, displays and stores the incoming data. Video data is validated within the review station using a public key, a copy of which is held by authorized panics. This scheme allows the holder of the public key to verify the authenticity of the recorded video data but precludes undetectable modification of the data generated by the tamper-protected private authentication key.
A multiphase mixture model is presented to describe shock compression of highly porous, multi-component powders. Volume fractions are represented as independent kinematic variables and thermodynamically-admissible phase interaction constitutive models are formulated in the context of a three phase system. Numerical solutions of the multiphase flow equations simulated impact on a porous layer of mixed powders of Al and Fe{sub 2}O{sub 3}. The multiphase model predicts dispersive compaction waves which have features similar to observed time-resolved pressure measurements.
GENSHELL is a three-dimensional shell mesh generation program. The three-dimensional shell mesh is generated by mapping a two-dimensional quadrilateral mesh into three dimensions according to one of several types of transformations: translation, mapping onto a spherical, ellipsoidal, or cylindrical surface, and mapping onto a user-defined spline surface. The generated three-dimensional mesh can then be reoriented by offsetting, reflecting about an axis, revolving about an axis, and scaling the coordinates. GENSHELL can be used to mesh complex three-dimensional geometries composed of several sections when the sections can be defined in terms of transformations of two-dimensional geometries. The code GJOIN is then used to join the separate sections into a single body. GENSHELL updates the EXODUS quality assurance and information records to help track the codes and files used to generate the mesh. GENSHELL reads and writes two-dimensional and three-dimensional mesh databases in the GENESIS database format; therefore, it is compatible with the preprocessing, postprocessing, and analysis codes in the Sandia National Laboratories Engineering Analysis Code Access System (SEACAS).
1990 amendments to the Clean Air Act have created the need for instruments capable of monitoring volatile organic compounds (VOCS) in public air space in an unattended and low cost manner. The purpose of the study was to develop and demonstrate the capability to do long term automatic and unattended ambient air monitoring using an inexpensive portable analytic system at a commercial manufacturing plant site. A gas chromatograph system personal computer hardware, meteorology tower & instruments, and custom designed hardware and software were developed. Comparison with an EPA approved method was performed. The system was sited at an aircraft engines manufacturing site and operated in a completely unattended mode for 60 days. Two VOCs were monitored every 30 minutes during the 24hr day. Large variation in the concentration from 800ppb to the limits of detection of about 10ppb were observed. Work to increase the capabilities of the system is ongoing.
Interest in launching payloads through the atmosphere to ever higher velocity is robust. For hundreds of years, guns and rockets have been improved for this purpose until they are now considered to be near to their performance limits. While the potential of electromagnetic technology to increase launch velocity has been known since late in the nineteenth century, it was not until about 1980 that a sustained and large-scale effort was started to exploit it. Electromagnetic launcher technology is restricted here to mean only that technology which establishes both a current density, J, and a magnetic field, B, within a part of the launch package, called the armature, so that J {times} B integrated over the volume of the armature is the launching force. Research and development activity was triggered by the discovery that high velocity can be produced with a simple railgun which uses an arc for its armature. This so called ``plasma-armature railgun`` has been the launcher technology upon which nearly all of the work has focused. Still, a relatively small parallel effort has also been made to explore the potential of electromagnetic launchers which do not use sliding contacts on stationary rails to establish current in the armature. One electromagnetic launcher of this type is called an induction coilgun because armature current is established by electromagnetic induction. In this paper, we first establish terminology which we will use not only to specify requirements for successful endoatmospheric launch but also to compare different launcher types. Then, we summarize the statuses of the railgun and induction coilgun technologies and discuss the issues which must be resolved before either of these launchers can offer substantial advantage for endoatomospheric launch.
To analyze the vulnerability of nuclear materials to theft or sabotage, Department of Energy facilities have been using, since 1989, a computer program called ASSESS, Analytic System and Software for Evaluation of Safeguards and Security. During the past year Sandia National Laboratories has began using an additional program, SEES, Security Exercise Evaluation Simulation, enhancing the picture of vulnerability beyond what either program achieves alone. ASSESS analyzes all possible paths of attack on a target and, assuming that an attack occurs, ranks them by the probability that a response force of adequate size can interrupt the attack before theft or sabotage is accomplished. A Neutralization module pits, collectively, a security force against the interrupted adversary force in a fire fight and calculates the probability that the adversaries are defeated. SEES examines a single scenario and simulates in detail the interactions among all combatants. Its output includes shots fired between shooter and target, and the hits and kills. Whereas ASSESS gives breadth of analysis, expressed statistically and performed relatively quickly, SEES adds depth of detail, modeling tactical behavior. ASSESS finds scenarios that exploit the greatest weaknesses of a facility. SEES explores these scenarios to demonstrate in detail how various tactics to nullify the attack might work out. Without ASSESS to find the facility weaknesses, it is difficult to focus SEES objectively on scenarios worth analyzing. Without SEES to simulate the details of response vs. adversary interaction, it is not possible to test tactical assumptions and hypotheses. Using both programs together, vulnerability analyses achieve both breadth and depth.
To analyze the vulnerability of nuclear materials to theft or sabotage, Department of Energy facilities have been using, since 1989, a computer program called ASSESS, Analytic System and Software for Evaluation of Safeguards and Security. During the past year Sandia National Laboratories has begun using an additional program, SEES, Security Exercise Evaluation Simulation, enhancing the picture of vulnerability beyond what either program achieves alone. Assess analyzes all possible paths of attack on a target and, assuming that an attack occurs, ranks them by the probability that a response force of adequate size can interrupt the attack before theft or sabotage is accomplished. A Neutralization module pits, collectively, a security force against the interrupted adversary force in a fire fight and calculates the probability that the adversaries are defeated. SEES examines a single scenario and simulates in detail the interactions among all combatants. its output includes shots fired between shooter and target, and the hits and kills. Whereas ASSESS gives breadth of analysis, expressed statistically and performed relatively quickly, SEES adds depth of detail, modeling tactical behavior. ASSESS finds scenarios that exploit the greatest weakness of a facility. SEES explores these scenarios to demonstrate in detail how various tactics to nullify the attack might work out. Without ASSESS to find the facility weakness, it is difficult to focus SEES objectively on scenarios worth analyzing. Without SEES to simulate the details of response vs. adversary interaction, it is not possible to test tactical assumptions and hypotheses. Using both programs together, vulnerability analyses achieve both breadth and depth.
Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic techniques.
Sandia National Laboratories and Los Alamos National Laboratory have been designated as the technical lead for Security, Safeguards and Computer/Information Security systems for all the DOE Complex 21/Weapons Complex Reconfiguration (WCR) facilities. The physical protection systems in these facilities will be required to meet the most current DOE orders and incorporate the latest physical protection technologies, proven state-of-the-art systems and strategies. The planned approach requires that security assistance and information be provided to the designers (e.g. the Complex 21 Architect & Engineer and the Weapons Complex Lead Laboratories) as early as possible and throughout all design phases. The outcome should avoid the costly retrofits to existing facilities that have occurred in the past and result in effective and comprehensive protection against current and projected threats with minimal impact on operations, safety and costs. This paper discusses the physical protection considerations being promoted for the integrated design effort for the Complex 21/Reconfiguration facilities, such as the tritium, uranium/lithium, plutonium processing and storage, high explosive and assembly and disassembly facilities.
The purpose of this report is to summarize the status of computational analysis of hypervelocity impact lethality in relatively nontechnical terms from the perspective of the author. It is not intended to be a review of the technical literature on the problems of concern. The discussion is focused by concentrating on two phenomenology areas which are of particular concern in computational impact studies. First, the material`s equation of state, specifically the treatment of expanded states of metals undergoing shock vaporization, is discussed. Second, the process of dynamic fragmentation is addressed. In both cases, the context of the discussion deals with inaccuracies and difficulties associated with numerical hypervelocity impact simulations. Laboratory experimental capabilities in hypervelocity impact for impact velocities greater than 10.0 km/s are becoming increasingly viable. This paper also gives recommendations for experimental thrusts which utilize these capabilities that will help to resolve the uncertainties in the numerical lethality studies that are pointed out in the present report.
Current classified document management systems require a tremendous amount of space and extensive manpower to account for, inventory, and protect the documents. Comprehensive analysis of current control and accountability procedures reveal the main problem is the actual handling of the paper itself. The purpose of the Networked Microsoft Windows 3.1 based Classified Document Control System (CDOCS) is to eliminate the paper by scanning and storing images of pages on a personal computer using {open_quotes}write once read mostly{close_quotes} (WORM) high density optical media. By saving images on the computer, not only can manpower and space requirements be reduced, but the chance of compromise is diminished. As an added benefit, the information is now more readily available to the authorized user and is provided to the user at the user`s PC. The network target for CDOCS is Microsoft Windows for Workgroups. Thus, the system is also readily applicable to unclassified document imaging uses.
Information system requirements that are expressed as simple English sentences provide a clear understanding of what is needed between system specifiers, administrators, users, and developers of information systems. The approach used to develop the requirements is the Natural-language Information Analysis Methodology (NIAM). NIAM allows the processes, events, and business rules to be modeled using natural language. The natural language presentation enables the people who deal with the business issues that are to be supported by the information system to describe exactly the system requirements that designers and developers will implement. Computer prattle is completely eliminated from the requirements discussion. An example is presented that is based upon a section of a DOE Order involving nuclear materials management. Where possible, the section is analyzed to specify the process(es) to be done, the event(s) that start the process, and the business rules that are to be followed during the process. Examples, including constraints, are developed. The presentation steps through the modeling process and shows where the section of the DOE Order needs clarification, extensions or interpretations that could provide a more complete and accurate specification.
Transparent and secure process monitoring systems may become an important tool in the dismantlement schemes in support of bilateral and multi-lateral treaties. A prototype system, using public key cryptography to authenticate compliance data, has been developed by Sandia National Laboratories. The Authenticated In-plant Process Monitor (AIPM) is an embedded process monitoring system capable of accepting up to sixteen industry standard process variables, at sample rates of up to two samples per second. Each AIPM will synchronously sample the process, authenticate, and transmit the data in real-time to the host receiving station. The receiving station will validate the compliance data and then display in real-time while updating a relational database. This new generation of monitoring systems must include protection from a host of possible threat scenarios while providing the user authentic clear text data. Data threats are controlled by the use of a public key Treaty Data Authentication Module (TDAM) utilizing the National Institute of Standards and Technology (NIST) Digital Signature Standard. System threats are minimized by the use of a tamper indicating enclosure that monitors unauthorized entry and environmental attacks. Insider threats will be controlled by the use of an authenticated bi-directional communication link between each remote AIPM and the host receiving station. This security envelope will be monitored on a real-time basis with appropriate action taken if an attack occurs. The employment of these security features allows the inspectorate to distribute unprocessed clear text data and an attached digital signature with confidence that the data cannot be forged.
Information Surety is the enhancement of the confidentiality, integrity, and availability of information and software systems. It is attained through sequential steps: identification of software reliability requirements and information protection needs, designing for a balanced level of risk throughout the system, and application of appropriate software and hardware technologies and procedures. The ability to apply these steps when developing systems is impaired by a general lack of understanding of surety issues by system developers, and by the fact that there are many separate areas of knowledge involved that are not currently integrated into a disciplined approach (e.g., risk assessment, information access control in computers and networks, secure messaging, trusted software development). Our best systems today are achieved by clever designers who use ad-hoc methods. In the absence of good development tools, technologies may be applied haphazardly and/or retrofitted, without yielding balanced protection. This paper will take the audience through an exploration of the elements of information surety, some common misconceptions about information surety today, and the even greater challenges on the horizon. It will end with some suggestions for research areas which will help evolve the discipline of information surety.
Sandia National Laboratories has considerable experience with monochrome video monitors used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than to identify intruders. There is a growing interest in the identification function of security video systems for both access control and insider protection. Because color video technology is rapidly changing and because color information is useful for identification purposes, Sandia National Laboratories established a program to evaluate the newest relevant color video equipment. This report documents the evaluation of an integral component, color monitors. It briefly discusses a critical parameter, dynamic range, details test procedures, and evaluates the results.
International Atomic Energy Agency (IAEA) inspectors must maintain continuity of knowledge on all safeguard samples and, in particular, on those samples drawn from plutonium product and spent fuel input tanks at a nuclear reprocessing plant`s blister sampling station. Integrity of safeguard samples must be guaranteed from the sampling point to the moment of sample analysis at an accepted local laboratory or at the IAEA`s Safeguards Analytical Laboratory (SAL) in Seibersdorf, Austria. The safeguard samples are drawn at a blister sampling station with inspector participation and then transferred via a pneumatic post system to the facility`s analytical laboratory. Transfer of the sample by the pneumatic post system, arrival of the sample in the operator`s analytical laboratory, and storage of the sample awaiting analysis are very time consuming activities for an inspector, particularly if continuous human surveillance is required for all these activities. These activities could be observed by ordinary surveillance methods, such as a video monitoring system, but this would be cumbersome and time consuming for both the inspector and the operator. This paper describes a secure container designed to assure sample vial integrity from the point the sample is drawn to treatment of the sample at a facility`s analytical laboratory.
The progress made in advanced packaging development at Sandia National Laboratories for integration of III-V photonic devices and CMOS IC`s on Silicon MCM substrates for planar aid stacked applications will be reported. Studies to characterize precision alignment techniques using solder attach materials compatible with both silicon IC`s and III-V devices will be discussed. Examples of the use of back-side alignment and IR through-wafer inspection will be shown along with the extra processing steps that are used. Under bump metallurgy considerations are also addressed.
A simplified explanation for gas flow instability in parallel heated channels is presented with specific applications to channels containing packed beds of power-producing particles. The explanation captures the basic governing physics of the viscosity-driven instability and hopefully removes some of the misconceptions surrounding this issue. Simple illustrative calculations, steady-state and transient, using the SAFSIM computer program are included in the explanation. The explanation points out that flow instability is common to any and all gas flow systems with parallel heated channels, that the addition of flow resistance to the entrance of a channel mitigates flow instability, and that instabilities do not occur instantaneously.
The design of a magnetically suspended six degree of freedom positioning system capable of nanometer positioning is presented. The sample holder is controlled in six degrees of freedom (DOF) over 300 micrometers of travel in X, Y and Z directions. A design and control summary, and test results indicating stability and power dissipation are included in the paper. The system is vacuum compatible, uses commercially available materials, and requires minimal assembly and setup.
Concepts for underground panel or drift seals at the Waste Isolation Pilot Plant are developed to satisfy sealing requirements of the operational period. The concepts are divided into two groups. In the ``NOW`` group, design concepts are considered in which a sleeve structure is installed in the panel access immediately after excavation and before waste is emplaced. In the ``LATER`` group, no special measures are taken during excavation or before waste emplacement; the seal is installed at a later date, perhaps up to 35 years after the drift is excavated. Three concepts are presented in both the NOW and LATER groups. A rigid sleeve, a yielding sleeve, and steel rings with inflatable tubes are proposed as NOW concepts. One steel ring concept and two concrete monoliths are proposed for seals emplaced in older drifts. Advantages and disadvantages are listed for each concept. Based on the available information, it appears most feasible to recommend a LATER concept using a concrete monolith as a preferred seal for the operational period. Each concept includes the potential of remedial grout and/or construction of a chamber that could be used for monitoring leakage from a closed panel during the operational period. Supporting in situ demonstrations of elements of the concepts are recommended.
An investigation of the shock compression and release properties of silicon carbide ceramic has been performed. A series of planar impact experiments has been completed in which stationary target discs of ceramic were struck by plates of either similar ceramic or other appropriate material at velocities up to 2.2 km/s with a propellant gun facility. The particle velocity history at the interface between the back of the target ceramic and a lithium-fluoride window material was measured with laser velocity interferometry (VISAR). Impact stresses achieved in these experiments range between about 10 and 50 GPa. Numerical solutions and analytic methods were used to determine the dynamic compression and release stress-strain behavior of the ceramic. Further analysis of the data was performed to determine dynamic strength and compressibility properties of silicon carbide.
Muir, J.F.; Hogan Jr., R.E.; Skocypec, R.D.; Buck, R.
A joint US/Federal Republic of Germany (FRG) project has successfully tested a unique solar-driven chemical reactor in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) experiment. The CAESAR test was a {open_quotes}proof-of-concept{close_quotes} demonstration of carbon-dioxide reforming of methane in a commercial-scale, solar, volumetric receiver/reactor on a parabolic dish concentrator. The CAESAR design; test facility and instrumentation; thermal and chemical tests; and analysis of test results are presented in detail. Numerical models for the absorber and the receiver are developed and predicted performance is compared with test data. Post test analyses to assess the structural condition of the absorber and the effectiveness of the rhodium catalyst are presented. Unresolved technical issues are identified and future development efforts are recommended.
This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.
A mission hazard assessment has been performed for the Strategic Target System Mission 1 (known as STARS M1) for hazards due to potential debris impact in the Marshall Islands area. The work was performed at Sandia National Laboratories as a result of discussion with Kwajalein Missile Range (KMR) safety officers. The STARS M1 rocket will be launched from the Kauai Test Facility (KTF), Hawaii, and deliver two payloads to within the viewing range of sensors located on the Kwajalein Atoll. The purpose of this work has been to estimate upper bounds for expected casualty rates and impact probability or the Marshall Islands areas which adjoin the STARS M1 instantaneous impact point (IIP) trace. This report documents the methodology and results of the analysis.
This Fire Hazards Analysis is sponsored by Plant Engineering and is prepared to support the Safety Assessment for the CNSAC Facility. This is a preliminary fire hazards analysis of a yet to be constructed facility and is based upon the current building design and the current understanding of the potential occupancy hazards. The governing occupancy for this building is personnel offices. The CNSAC facility will be dedicated primarily to two activities: (1) arms control and verification technology and (2) intelligence. This report supplements the Safety Assessment for the CNSAC facility and follows the guidance of DOE Memorandum EH-31.3 and meets the objectives of paragraph 4 of DOE Order 5480.7A, ``Fire Protection.`` This analysis demonstrates that under ``worst case`` assumptions a fire in the CNSAC facility will result in consequences which are below DOE offsite guidelines for accident conditions. This report is based upon preliminary design information and any major changes to the building design may require additional analyses.
The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.
Sandia National Laboratories maintains several libraries of equation of state tables, in a modified Sesame format, for use in hydrocode calculations and other applications. This report discusses one of those libraries, the seslan file, which contains 78 tables from the Los Alamos equation of state library. Minor changes have been made to these tables, making them more convenient for code users and reducing numerical difficulties that occasionally arise in hydrocode calculations.
The ANSI/ANS 8.1 criticality safety standard recommends validation and benchmarking of the calculational methods used in evaluating criticality safety limits for away-from-reactor applications. The lack of critical experiments with burned light-water reactor (LWR) fuel in racks or in casks necessitates the validation of burnup credit methods by comparison with LWR core criticals. These benchmarks are relevant because they test a methodology`s ability to predict spent fuel isotopic and to evaluate the reactivity effects of heterogeneities and strong absorbers. Data are available to perform analyses at precise state points. As part of the Burnup Credit Analysis Verification (BCAV) Task, the U.S. Department of Energy has sponsored analysis of selected reactor core critical configurations from commercial pressurized-water-reactors (PWRs). The initial analysis methodology used the SCALE-4 code system to analyze a set of reactor critical configurations from Virginia Power`s Slurry and North Anna reactors. However, the analysis procedure was complex and included the calculation of lumped fission products. The methodology has since been revised to simplify both the data requirements and the calculational procedure for the criticality analyst. This revised methodology is validated here by a comparison with three reactor critical configurations from Tennessee Valley Authority`s Sequoyah Unit 2 Cycle 3 and two from Virginia Power`s Slurry Unit 1 Cycle 2.
The current political and economic situations suggest that significant reductions of nuclear forces outside the US will continue. This implies that in times of crisis the rapid deployment of nuclear weapons into a theater may be required. This paper describes a proposed Mobile Integrated C{sup 3} and Security System (MICSS). The MICSS, together with associated personnel, could satisfy the command and control and security requirements of a deployed nuclear operation. Rapid deployment poses unique nuclear weapon surety difficulties that must be overcome for the operation to be effective and survivable. The MICSS must be portable, reliable, limited in size, and easily emplaced to facilitate movement, reduce the possibility of detection, and minimize manpower requirements. The MICSS will be based on existing technology. Sandia has designed prototype mobile command centers for the military. These command centers are based on an approach that stresses modularity, standards, and the use of an open architecture. Radio, telephone, satellite communications, communication security, and global positioning system equipment has been successfully integrated into the command centers. Sandia is also supporting the development of portable security systems for the military. These systems are rapidly deployable and mission flexible and are capable of intrusion detection, area and alarm display, night assessment, and wireless sensor communications. This paper is organized as follows: Background information about the prototype mobile command centers will be presented first. Background information about portable security systems concepts will then be given. Next, an integrated communications and security system will be presented, and finally, the design and status of a prototype MICSS will be described.
The title problem is of particular interest for the analysis of seismic signals arising from underground nuclear explosions. Previous attempts at the solution have indicated that, although cylindrical symmetry exists, conventional methods cannot be applied because of the existence of plane and spherical boundaries. The present paper develops a ray-grouping technique for finding the solution to the title problem. This technique allows the separation of the problem into a series of canonical problems. Each such problem deals with a given boundary condition (e.g., continuity conditions at a material interface). Using this technique, one may follow waves along ray paths. It is easy to identify, after n reflections, (a) rays which arrive simultaneously at a given point and (b) the terms in the solution which need to be included at a given time. It is important to note that a cylindrical coordinate system is not employed, even though the problem is axially symmetric. Instead, the equations are carefully transformed making it possible to use a Cartesian coordinate system. This results in a spectral representation of the solution in terms of algebraic expressions in lieu of Bessel functions.
Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.
Ten MC4073/4369 programmer base plates were analyzed. This component, a programmer base plate for the SRAM II (and later the SRAM A), is specified as a Grade C quality casting made of aluminum Alloy A356, heat treated to the T6 condition. A concern was expressed regarding the choice of an A356 casting for this application, given the complexity and severity of the loading environment. Preliminary tests and analyses suggested that the design was adequate, but noted the uncertainty involved in a number of their underlying assumptions. The uncertainty was compounded by the discovery that the casting used in the original series of mechanical tests failed. In this investigation, several production castings were examined and found to be of a quality superior to that required under current specifications. Their defect content and microstructure were studied and compared with published data to establish a mechanical property data base. The data base was supplemented with a series of X-direction static tests, which characterized the loading environment and measured the overall casting performance. It was found that the mechanical properties of the supplied castings were adequate for the anticipated X-direction loading environment, but the component is not over-designed. The established data base further indicates that a reduction in casting quality to the allowable level could result in failure of the component. Recommendations were made including (1) change the component specification to require higher casting quality in highly stressed areas, (2) supplement the inspection procedures to ensure adequate quality in critical regions, (3) alter the component design to reduce the stress levels in the mounting feet, (4) substitute a modified A356 alloy to improve the mechanical properties and their consistency, and (5) more thoroughly establish a data base for the mechanical property consequences of levels and configurations of casting defects.
This document is the Maintenance Manual for the Beneficial Uses Shipping System (BUSS) cask. These instructions address requirements for maintenance, inspection, testing, and repair, supplementing general information found in the BUSS Safety Analysis Report for Packaging (SARP), SAND 83-0698. Use of the BUSS cask is authorized by the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) for the shipment of special form cesium chloride or strontium flouride capsules.
CAMCON, the Compliance Assessment Methodology CONtroller, is an analysis system that assists in assessing the compliance of the Waste Isolation Pilot Plant (WIPP) with applicable long-term regulations of the US Environmental Protection Agency, including Subpart B of the Environmental Standards for the Management and Disposal of spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191 and 40CFR268.6, which is the portion of the Land Disposal Restrictions implementing the Resource, Conservative, and Recovery Act of 1976, as amended that states the conditions for disposal of hazardous chemical wastes. This manual provides an architectural overview of the CAMCON system. Furthermore this manual presents guidelines and presents suggestions for programmers developing the many different types of software necessary to investigate various events and physical processes of the WIPP. These guidelines include user interface requirements, minimum quality assurance requirements, coding style suggestions, and the use of numerous software libraries developed specifically for or adapted for the CAMCON system.
This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.
One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.
Interactive Collaborative Environments (ICE) technologies allow teames at separate locations to work concurrently on joint problem solving. Examples of ICE use include engineers simultaneously viewing and manipulating the same CAD application to discuss design/production changes and trade-offs. This concept was demonstrated in March of 1992 between AT&T, Shreveport Works and Holmdel. In May 1992, Sandia National Laboratories demonstrated a platform independent version of application sharing code using the workstations and application software available at AT&T, Shreveport Works. AT&T and Sandia are currently negotiating future work agreements. In addition, Sandia has provided demonstrations and created pilot project links for internal Sandia use, and for communication with other facilities, e.g. Los Alamos National Laboratories and Sandia, California location. ICE can also be used to link up suppliers and customers, even in different companies. Anywhere team members are separated geographically, or even between building and facilities at a particular site, ICE can improve remote problem solving, cutting down on delays and miscommunication flascoes.
The combination of an energy dispersive x-ray spectrometer (EDS) with the ultrahigh vacuum environment of many modern electron microscopes requires the spectrometer designer to take extra precautions and presents the microscopist with the additional option of utilizing windowless spectrometers for light element detection while not worrying about contamination of the detector. UHV is generally defined as a pressure of better than 10{sup {minus}7} Pa and is necessary to prevent specimen modification by the components of the vacuum. UHV may also be defined as an environment in which the time to form a monolayer on the specimen is equal to or longer than the usual time for a laboratory measurement. This report examines performance of energy dispersion x-ray spectrometers in UHV.