Publications

5 Results

Search results

Jump to search filters

Conductivities and Seebeck Coefficients of Boron Carbides: ''Softening-Bipolaron'' Hopping

Physical Review B

Aselage, Terrence L.; Emin, David E.; McCready, Steven S.

The most conspicuous feature of boron carbides' electronic transport properties is their having both high carrier densities and large Seebeck coefficients. The magnitudes and temperature dependencies of the Seebeck coefficients are consistent with large contributions from softening bipolarons: singlet bipolarons whose stabilization is significantly affected by their softening of local vibrations. Boron carbides' high carrier densities, small activation energies for hopping ({approx} 0.16 eV), and anomalously large Seebeck coefficients combine with their low, glass-like thermal conductivities to make them unexpectedly efficient high-temperature thermoelectrics.

More Details

Anomalous Hall effect in Gd-doped La{sub 2/3}Ca{sub 1/3}MnO{sub 3}

Emin, David E.

Ceramic samples of (La{sub 1-x}Gd{sub x}){sub 2/3}Ca{sub 1/3}MnO{sub 3} were prepared and used as targets to grow films onto LaAlO{sub 3} substrates by pulsed laser deposition. Electrical resistance and thermopower, measured vs temperature and applied magnetic fields indicate transport dominated by positive small polarons in the high temperature paramagnetic state. The Hall effect was measured in 0.5 {mu}m thick films of composition x=0 and x=0.25. No evidence for extraordinary hall effect was found in the paramagnetic regime. Instead, the magnitude of the Hall coefficient decreases exponentially with temperature. This behavior and its anomalous negative sign are interpreted to result from face-diagonal hopping of small polarons in the Mn sublattice.

More Details

Breakdown of the resistor-network model for steady-state hopping conduction

Emin, David E.

General master equations are used to study steady-state hopping transport in a disordered solid. We express a site`s occupancy in terms of its quasi-electrochemical potential (QECP); currents flow between sites whose QECP`s differ. Coupled nonlinear circuit equations for the QECP`s result from the steady-state condition and the boundary condition that the total QECP drop is the applied emf. When the site-to-site QECP differences are much smaller than the thermal energy, K{sub B}t, the effect of current flow on site occupancies is ignorable. These equations then reduce to those of a resistance network. However, the resistor-network model fails: (a) at low temperatures, (b) with increasing disorder, and (c) with increasing emf. We therefore study hopping conduction beyond this approximation. Exact examples show the importance of current-induced charge redistribution in non-ohmic steady-state flow.

More Details

Disorder effects on small-polaron formation and hopping

Emin, David E.

Small-polarons will only form in covalent crystals whose electronic halfbandwidths are sufficiently narrow, E{sub b} > W. The absence of small polaronic carriers in most covalent crystals presumably indicates that E{sub b} < W in these instances. However, evidence of small polarons is commonly found in disordered materials despite the estimates of E{sub b} and W not being significantly different from those of crystals. This result is ration by stating that disorder has slowed carrier motion enough to permit small-polaron formation. Recently the question of how disorder affects the stability of quasifree carriers with respect to small-polaron formation has been addressed. It is found that only modest energetic disorder is required to induce small-polaron formation. Here I first succinctly describe essential elements of this work. Second, I address the role of disorder on the adiabatic hopping motion of small polarons. Energy bands in most materials in which small-polarons are found are thought to be sufficiently wide (> a phonon energy) that the small-polaronic hopping is ``adiabatic.`` That is, the electronic carriers move between sites sufficienfly rapidly to follow the atomic motions. In this situation the small-polaron jump rates are independent of intersite separations. The magnitudes of the preexponential factors of the measured hopping mobilities typically support this view. Further support for this picture is found from experiments that determine weak dependences of the mobility on hydrostatic pressure.

More Details

Formation, motion and high-temperature superconductivity of large bipolarons

Physica C: Superconductivity and its applications

Emin, David E.

Unlike small (localized) bipolarons, large (mobile) bipolarons can yield bipolaronic superconductivity. The stringent conditions for the formation of large bipolarons as well as distinctive features of the normal-state transport and superconducting-state properties of large bipolarons appear consistent with observations of the high-temperature superconductors. © 1989.

More Details
5 Results
5 Results