Publications

Results 51–75 of 79

Search results

Jump to search filters

The impact of plasma dynamics on the self-magnetic-pinch diode impedance

Physics of Plasmas

Bennett, Nichelle; Crain, M.D.; Droemer, Darryl W.; Gignac, Raymond E.; Molina, Isidro; Obregon, Robert; Smith, Chase C.; Wilkins, Frank L.; Welch, Dale R.; Cordova, Steve; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua L.; Mazarakis, Michael G.; Nielsen, D.S.; Romero, Tobias; Simpson, Sean S.; Webb, Timothy J.; Ziska, Derek Z.

In this study, the self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. The basic operation of this diode has long been understood in the context of pinched diodes, including the dynamic effect that the diode impedance decreases during the pulse due to electrode plasma formation and expansion. Experiments being conducted at Sandia National Laboratories' RITS-6 accelerator are helping to characterize these plasmas using time-resolved and time-integrated camera systems in the x-ray and visible. These diagnostics are analyzed in conjunction with particle-in-cell simulations of anode plasma formation and evolution. The results confirm the long-standing theory of critical-current operation with the addition of a time-dependent anode-cathode gap length. Finally, the results may suggest that anomalous impedance collapse is driven by increased plasma radial drift, leading to larger-than-average ion vr × Bθ acceleration into the gap.

More Details

Evaluation of a gamma camera system for the RITS-6 accelerator using the self-magnetic pinch diode

Proceedings of SPIE - The International Society for Optical Engineering

Webb, Timothy J.; Kiefer, Mark L.; Gignac, Raymond; Baker, Stuart A.

The self-magnetic pinch (SMP) diode is an intense radiographic source fielded on the Radiographic Integrated Test Stand (RITS-6) accelerator at Sandia National Laboratories in Albuquerque, NM. The accelerator is an inductive voltage adder (IVA) that can operate from 2-10 MV with currents up to 160 kA (at 7 MV). The SMP diode consists of an annular cathode separated from a flat anode, holding the bremsstrahlung conversion target, by a vacuum gap. Until recently the primary imaging diagnostic utilized image plates (storage phosphors) which has generally low DQE at these photon energies along with other problems. The benefits of using image plates include a high-dynamic range, good spatial resolution, and ease of use. A scintillator-based X-ray imaging system or "gamma camera" has been fielded in front of RITS and the SMP diode which has been able to provide vastly superior images in terms of signal-to-noise with similar resolution and acceptable dynamic range.

More Details

Investigations of shot reproducibility for the SMP diode at 4.5 MV

Cordova, S.; Johnston, Mark D.; Leckbee, Joshua L.; Kiefer, Mark L.; Nielsen, D.S.; Renk, Timothy J.; Webb, Timothy J.; Ziska, Derek Z.

In experiments conducted on the RITS-6 accelerator, the SMP diode exhibits sig- ni cant shot-to-shot variability. Speci cally, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. To remove knob emission as a source, only data from a shot series conducted with a 4.5-MV peak voltage are considered. The scope of this report is limited to sources of variability which occur away from the diode, such as power ow emission and trajectory changes, variations in pulsed power, dustbin and transmission line alignment, and di erent knob shapes. We nd no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we nd that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance pro les. This result forms the basis of a follow-on study focusing on the variability resulting from diode physics. 3

More Details
Results 51–75 of 79
Results 51–75 of 79