Development of a downhole tracer and pH measurement instrument for application in geothermal wells: Toward real-time chemical well logging
Abstract not provided.
Abstract not provided.
As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance these green energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and a glue (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by a three-point-bend test. The results of the introduction of nanomaterials demonstrated an increase in strength of the flywheels C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost ($/kW-h).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nano Letter
Abstract not provided.
Abstract not provided.
This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.
Abstract not provided.
Inorganic Chemistry
Abstract not provided.
Journal of Coordination Chemistry
Abstract not provided.
European Journal of Inorganic Chemistry
Abstract not provided.
Abstract not provided.
The first step in an attempt to isolate Sc° from a W° crucible was explored by soaking the samples in a series of organic (HOAc) and inorganic (HCl, H2SO4, H3PO4, HNO3) acids. All samples, except the HOAc, yielded a powder. The weight loss suggests that HNO3 is the most efficient solvent; however, the powders were tentatively identified by PXRD and found to contain both W and Sc by-products. The higher weight loss may also indicate dissolution of the Wo crucible, which was further evidenced upon visual inspection of the crucible. The H3PO4 acid soak yielded the cleanest removal of Sc from the crucible. More work to understand the separation of the Sc° from the W° crucible is necessary but the acid routes appear to hold promise under not as of yet established criteria.
Proceedings of SPIE - The International Society for Optical Engineering
Scintillating nanomaterials are being investigated as replacements for fragile, difficult to synthesize single crystal radiation detectors, but greater insight into their structural stability when exposed to extreme environments is needed to determine long-term performance. An initial study using high-Z cadmium tungstate (CdWO4) nanorods and an in-situ ion irradiation transmission electron microscope (I3TEM) was performed to determine the feasibility of these extreme environment experiments. The I3TEM presents a unique capability that permits the real time characterization of nanostructures exposed to various types of ion irradiation. In this work, we investigated the structural evolution of CdWO4 nanorods exposed to 50 nA of 3 MeV copper (3+) ions. During the first several minutes of exposure, the nanorods underwent significant structural evolution. This appears to occur in two steps where the nanorods are first segmented into smaller sections followed by the sintering of adjacent particles into larger nanostructures. An additional study combined in-situ ion irradiation with electron tomography to record tilt series after each irradiation dose; which were then processed into 3D reconstructions to show radiation damage to the material over time. Analyses to understand the mechanisms and structure-property relationships involved are ongoing. © 2012 SPIE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
During this task, Silane functionalized TiO2 and HK3Ti4O4(SiO4)3 were sent to Goodyear (GY) for testing. These materials were characterized based on their interaction with the model elastomer, squalene. The Van der Waals interactions and Hamaker Constants for ZnO particles in squalene and rubber materials were characterized and it was determined that a 10-20 nm spacing was necessary between primary filler particles to maintain a stable nanocomposite. Contact angle measurements on the ZnO and ZnO-silane materials indicated that the solvent should wet the particles, and solvophobic attractions should not be present. These studies showed that the surface modification with sulfosilane coupling agents was successful, and high levels of dispersion of the particles remained possible. Further, a novel surface charging phenomenon where negative surface charging is developed in the squalene environment was observed and corroborated by measurements of particle size and of the surface modified materials in squalene. This impacts the dispersion of the particles according to the traditional colloidal interpretation of electrostatic repulsive forces between particles. Additionally, thin nanocomposite fibers were developed using electrospinning. The size and shape of the oxides did not change during the electrospinning process, although the shape of the fiber and the distribution of the particles, particularly for ZnO, was not ideal. There was an obvious increase in elastic modulus and hardness from the addition of the oxides, but differentiating the oxides, and particularly the surfactants, was difficult. The A-1289 lead to the greatest dispersion of the filler particles, while the A-1589 and the NXT produced clustered particle aggregates. This agrees with previous study of these materials in low molecular weight squalene solvent studies reported earlier. The behavior of the nanoparticle ZnO and the microparticle silica is different as well, with the ZnO being contained within the elastomer, and the SiO2 forming monolayers at the surface of the elastomer. The dynamic mechanical analysis did not show clear trends between the surface modification and the aggregate structure. In the silica particles, the NXT led to the least particle interaction, followed by the A-1289 and highest particle interaction found for the A-1589. For the nanosized ZnO, the best dispersion was found for the A-1589, with both the A-1289 and NXT exhibiting frequency dependent responses.
Abstract not provided.