Publications

Results 26–50 of 63

Search results

Jump to search filters

Wafer-Scale TaOx Device Variability and Implications for Neuromorphic Computing Applications

IEEE International Reliability Physics Symposium Proceedings

Bennett, Christopher H.; Garland, Diana; Jacobs-Gedrim, Robin B.; Agarwal, Sapan A.; Marinella, Matthew J.

Scaling arrays of non-volatile memory devices from academic demonstrations to reliable, manufacturable systems requires a better understanding of variability at array and wafer-scale levels. CrossSim models the accuracy of neural networks implemented on an analog resistive memory accelerator using the cycle-to-cycle variability of a single device. In this work, we extend this modeling tool to account for device-to-device variation in a realistic way, and evaluate the impact of this reliability issue in the context of neuromorphic online learning tasks.

More Details

Designing and modeling analog neural network training accelerators

2019 International Symposium on VLSI Technology, Systems and Application, VLSI-TSA 2019

Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Bennett, Christopher H.; Hsia, Alexander W.; Van Heukelom, Michael V.; Hughart, David R.; Fuller, Elliot J.; Li, Yiyang; Talin, A.A.; Marinella, Matthew J.

Analog crossbars have the potential to reduce the energy and latency required to train a neural network by three orders of magnitude when compared to an optimized digital ASIC. The crossbar simulator, CrossSim, can be used to model device nonidealities and determine what device properties are needed to create an accurate neural network accelerator. Experimentally measured device statistics are used to simulate neural network training accuracy and compare different classes of devices including TaOx ReRAM, Lir-Co-Oz devices, and conventional floating gate SONOS memories. A technique called 'Periodic Carry' can overcomes device nonidealities by using a positional number system while maintaining the benefit of parallel analog matrix operations.

More Details

Failure Thresholds in CBRAM Due to Total Ionizing Dose and Displacement Damage Effects

IEEE Transactions on Nuclear Science

Taggart, Jennifer L.; Jacobs-Gedrim, Robin B.; McLain, Michael L.; Barnaby, H.J.; Bielejec, Edward S.; Hardy, W.; Marinella, Matthew J.; Kozicki, M.N.; Holbert, K.

With the growing interest to explore Jupiter's moons, technologies with +10 Mrad(Si) tolerance are now needed, to survive the Jovian environment. Conductive-bridging random access memory (CBRAM) is a nonvolatile memory that has shown a high tolerance to total ionizing dose (TID). However, it is not well understood how CBRAM behaves in an energetic ion environment where displacement damage (DD) effects may also be an issue. In this paper, the response of CBRAM to 100-keV Li, 1-MeV Ta, and 200-keV Si ion irradiations is examined. Ion bombardment was performed with increasing fluence steps until the CBRAM devices failed to hold their programed state. The TID and DD dose (DDD) at the fluence of failure were calculated and compared against tested ion species. Results indicate that failures are more highly correlated with TID than DDD. DC cycling tests were performed during 100-keV Li irradiations and evidence was found that the mobile Ag ion supply diminished with increasing fluence. The cycling results, in addition to prior 14-MeV neutron work, suggest that DD may play a role in the eventual failure of a CBRAM device in a combined radiation environment.

More Details

Training a Neural Network on Analog TaOx ReRAM Devices Irradiated With Heavy Ions: Effects on Classification Accuracy Demonstrated With CrossSim

IEEE Transactions on Nuclear Science

Jacobs-Gedrim, Robin B.; Hughart, David R.; Agarwal, Sapan A.; Vizkelethy, Gyorgy V.; Bielejec, Edward S.; Vaandrager, Bastiaan L.; Swanson, Scot E.; Knisely, Kathrine E.; Taggart, J.L.; Barnaby, H.J.; Marinella, Matthew J.

The image classification accuracy of a TaOx ReRAM-based neuromorphic computing accelerator is evaluated after intentionally inducing a displacement damage up to a fluence of 1014 2.5-MeV Si ions/cm2 on the analog devices that are used to store weights. Results are consistent with a radiation-induced oxygen vacancy production mechanism. When the device is in the high-resistance state during heavy ion radiation, the device resistance, linearity, and accuracy after training are only affected by high fluence levels. The findings in this paper are in accordance with the results of previous studies on TaOx-based digital resistive random access memory. When the device is in the low-resistance state during irradiation, no resistance change was detected, but devices with a 4-kΩ inline resistor did show a reduction in accuracy after training at 1014 2.5-MeV Si ions/cm2. This indicates that changes in resistance can only be somewhat correlated with changes to devices' analog properties. This paper demonstrates that TaOx devices are radiation tolerant not only for high radiation environment digital memory applications but also when operated in an analog mode suitable for neuromorphic computation and training on new data sets.

More Details

Unified computational model of transport in metal-insulating oxide-metal systems

Applied Physics A: Materials Science and Processing

Tierney, Brian D.; Hjalmarson, Harold P.; Jacobs-Gedrim, Robin B.; Agarwal, Sapan A.; James, Conrad D.; Marinella, Matthew J.

A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift–diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.

More Details

Piecewise empirical model (PEM) of resistive memory for pulsed analog and neuromorphic applications

Journal of Computational Electronics

Marinella, Matthew J.; Niroula, John N.; Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Hughart, David R.; Hsia, Alexander W.; James, Conrad D.

With the end of Dennard scaling and the ever-increasing need for more efficient, faster computation, resistive switching devices (ReRAM), often referred to as memristors, are a promising candidate for next generation computer hardware. These devices show particular promise for use in an analog neuromorphic computing accelerator as they can be tuned to multiple states and be updated like the weights in neuromorphic algorithms. Modeling a ReRAM-based neuromorphic computing accelerator requires a compact model capable of correctly simulating the small weight update behavior associated with neuromorphic training. These small updates have a nonlinear dependence on the initial state, which has a significant impact on neural network training. Consequently, we propose the piecewise empirical model (PEM), an empirically derived general purpose compact model that can accurately capture the nonlinearity of an arbitrary two-terminal device to match pulse measurements important for neuromorphic computing applications. By defining the state of the device to be proportional to its current, the model parameters can be extracted from a series of voltages pulses that mimic the behavior of a device in an analog neuromorphic computing accelerator. This allows for a general, accurate, and intuitive compact circuit model that is applicable to different resistance-switching device technologies. In this work, we explain the details of the model, implement the model in the circuit simulator Xyce, and give an example of its usage to model a specific Ta / TaO x device.

More Details

Impact of linearity and write noise of analog resistive memory devices in a neural algorithm accelerator

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Jacobs-Gedrim, Robin B.; Agarwal, Sapan A.; Knisely, Kathrine E.; Stevens, Jim E.; Van Heukelom, Michael V.; Hughart, David R.; James, Conrad D.; Marinella, Matthew J.

Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaOx, and two conducting metallization systems, Cu-SiO2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. This suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.

More Details

Achieving ideal accuracies in analog neuromorphic computing using periodic carry

Digest of Technical Papers - Symposium on VLSI Technology

Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Hsia, Alexander W.; Hughart, David R.; Fuller, Elliot J.; Talin, A.A.; James, Conrad D.; Plimpton, Steven J.; Marinella, Matthew J.

Analog resistive memories promise to reduce the energy of neural networks by orders of magnitude. However, the write variability and write nonlinearity of current devices prevent neural networks from training to high accuracy. We present a novel periodic carry method that uses a positional number system to overcome this while maintaining the benefit of parallel analog matrix operations. We demonstrate how noisy, nonlinear TaOx devices that could only train to 80% accuracy on MNIST, can now reach 97% accuracy, only 1% away from an ideal numeric accuracy of 98%. On a file type dataset, the TaOx devices achieve ideal numeric accuracy. In addition, low noise, linear Li1-xCoO2 devices train to ideal numeric accuracies using periodic carry on both datasets.

More Details
Results 26–50 of 63
Results 26–50 of 63