Publications

Results 151–175 of 332

Search results

Jump to search filters

Design optimization of GaN vertical power diodes and comparison to Si and SiC

2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2017

Flicker, Jack D.; Kaplar, Robert K.

In order to determine how material characteristics percolate up to system-level improvements in power dissipation for different material systems and device types, we have developed an optimization tool for power diodes. This tool minimizes power dissipation in a diode for a given system operational regime (reverse voltage, forward current density, frequency, duty cycle, and temperature) for a variety of device types and materials. We have carried out diode optimizations for a wide range of system operating points to determine the regimes for which certain power diode materials/devices are favored. In this work, we present results comparing state-of-the-art Si and SiC merged PiN Schottky (MPS) diodes to vertical GaN (v-GaN) PiN diodes and as-yet undeveloped v-GaN Schottky barrier diodes (SBDs). The results of this work show that for all conditions tested, SiC MPS and v-GaN PiN diodes are preferred over Si MPS diodes. v-GaN PiN diodes are preferred over SiC MPS diodes for high-voltage / moderate-frequency operation with the limits of the v-GaN PiN preferred regime, increasing with increasing forward current density. If a v-GaN SBD diode were available, it would be preferred over all other devices at low to moderate voltages, for all frequencies from 100 Hz to 1 MHz.

More Details

Ultrafast reverse recovery time measurement for wide-bandgap diodes

IEEE Transactions on Power Electronics

Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.; King, Michael P.; Neely, Jason C.; Kizilyalli, Isik C.; Kaplar, Robert K.

A system is presented that is capable of measuring subnanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 - 1 A) and reverse voltages (0 - 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultrashort Pulse Laser, a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS-based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode, which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. This system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50-100 V and forward current of 1-100 mA.

More Details

Evaluation of a 'Field Cage' for Electric Field Control in GaN-Based HEMTs That Extends the Scalability of Breakdown into the kV Regime

IEEE Transactions on Electron Devices

Tierney, Brian D.; Dickerson, Jeramy R.; Reza, Shahed R.; Kaplar, Robert K.; Baca, A.G.; Marinella, Matthew J.

A distributed impedance 'field cage' structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dVds/dt = 100 V/ns. For both dc and transient results, the voltage between the gate and drain is laterally distributed, ensuring that the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving the breakdown voltage scalability to a few kilovolts.

More Details

Nuclear microprobe investigation of the effects of ionization and displacement damage in vertical, high voltage GaN diodes

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy V.; King, Michael P.; Aktas, O.; Kizilyalli, I.C.; Kaplar, Robert K.

Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. The displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.

More Details

Ohmic contacts to Al-rich AlGaN heterostructures

Physica Status Solidi (A) Applications and Materials Science

Douglas, Erica A.; Reza, Shahed R.; Sanchez, Carlos A.; Allerman, A.A.; Klein, Brianna A.; Armstrong, Andrew A.; Kaplar, Robert K.; Baca, A.G.; Koleske, Daniel K.

Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al0.85Ga0.15N/Al0.66Ga0.34N. However, a dry etch recess followed by n+-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts on a Al0.85Ga0.15N/Al0.66Ga0.34N heterostructure. Specific contact resistivity of 5 × 10−3 Ω cm2 was achieved after annealing Ti/Al/Ni/Au metallization.

More Details

Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes

IEEE Electron Device Letters

Celio, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.; Vizkelethy, Gyorgy V.; Armstrong, Andrew A.; Fischer, Arthur J.; Allerman, A.A.; Kaplar, Robert K.; Aktas, Ozgur; Kizilyalli, Isik C.; Talin, A.A.; Leonard, Francois L.

Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences field spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.

More Details
Results 151–175 of 332
Results 151–175 of 332