USE OF MULTIVARIATE ANALYSIS FOR DETECTING ORIENTATION CHANGES IN STEEL VIA LAUE DIFFRACTION ARTIFACTS WITHIN XRF SPECTRA
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
TlBr has the properties to become the leading radiation detection semiconductor. It has not yet been deployed due to a short lifetime of only hours to weeks. While the rapid structural deteriorations must come from ionic conduction under operating electrical fields, detailed aging mechanisms have not been understood. As a result, progress to extend lifetime has been limited despite extensive studies in the past. We have developed new atomistic simulation capabilities to enable study of ionic conduction under electrical fields. Our combined simulations and experiments indicate that dislocations in TlBr climb under electrical fields. This climb is the root cause for structural deterioration. Hence, we discovered new strengthening methods to reduce aging. Our new atomistic simulation approach can have broader impact on other Sandia programs including battery research. Our project results in 4 publications, a new invention, new LAMMPS capabilities, solution to mission relevant materials, and numerous presentations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
MRS Advances
TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. This discovery can lead to new understanding of TlBr aging mechanisms under external fields.
Abstract not provided.
Abstract not provided.
Journal of Materials Science Research
TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always be applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.
Elpasolite scintillators are a large family of halides which includes compounds reported to meet the NA22 program goals of <3% energy resolution at 662 keV1. This work investigated the potential to produce quality elpasolite compounds and alloys of useful sizes at reasonable cost, through systematic experimental and computational investigation of crystal structure and properties across the composition space. Discovery was accelerated by computational methods and models developed previously to efficiently identify cubic members of the elpasolite halides, and to evaluate stability of anion and cation exchange alloys.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chemistry of Materials
Abstract not provided.