Anomaly Detection and Surety for Safeguards Data
Abstract not provided.
Abstract not provided.
12th USENIX Workshop on Cyber Security Experimentation and Test, CSET 2019, co-located with USENIX Security 2019
This paper presents Proteus, a framework for conducting rapid, emulation-based analysis of distributed ledger technologies (DLTs) using FIREWHEEL, an orchestration tool that assists a user in building, controlling, observing, and analyzing realistic experiments of distributed systems. Proteus is designed to support any DLT that has some form of a “transaction” and which operates on a peer-to-peer network layer. Proteus provides a framework for an investigator to set up a network of nodes, execute rich agent-driven behaviors, and extract run-time observations. Proteus relies on common features of DLTs to define agent-driven scenarios in a DLT-agnostic way allowing for those scenarios to be executed against different DLTs. We demonstrate the utility of using Proteus by executing a 51% attack on an emulated Ethereum network containing 2000 nodes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In cybersecurity forensics and incident response, the story of what has happened is the most important artifact yet the one least supported by tools and techniques. Existing tools focus on gathering and manipulating low-level data to allow an analyst to investigate exactly what happened on a host system or a network. Higher-level analysis is usually left to whatever ad hoc tools and techniques an individual may have developed. We discuss visual representations of narrative in the context of cybersecurity incidents with an eye toward multi-scale illustration of actions and actors. We envision that this representation could smoothly encompass individual packets on a wire at the lowest level and nation-state-level actors at the highest. We present progress to date, discuss the impact of technical risk on this project and highlight opportunities for future work.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This paper describes a new hybrid modeling and simulation architecture developed at Sandia for understanding and developing protections against and mitigations for cyber threats upon control systems. It first outlines the challenges to PCS security that can be addressed using these technologies. The paper then describes Virtual Control System Environments (VCSE) that use this approach and briefly discusses security research that Sandia has performed using VCSE. It closes with recommendations to the control systems security community for applying this valuable technology.