Molecular Dynamics Simulations of Hydrogen and Nitrogen Implantation in Tungsten
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Materials Science
Computational tools to study thermodynamic properties of magnetic materials have, until recently, been limited to phenomenological modeling or to small domain sizes limiting our mechanistic understanding of thermal transport in ferromagnets. Herein, we study the interplay of phonon and magnetic spin contributions to the thermal conductivity in a-iron utilizing non-equilibrium molecular dynamics simulations. It was observed that the magnetic spin contribution to the total thermal conductivity exceeds lattice transport for temperatures up to two-thirds of the Curie temperature after which only strongly coupled magnon-phonon modes become active heat carriers. Characterizations of the phonon and magnon spectra give a detailed insight into the coupling between these heat carriers, and the temperature sensitivity of these coupled systems. Comparisons to both experiments and ab initio data support our inferred electronic thermal conductivity, supporting the coupled molecular dynamics/spin dynamics framework as a viable method to extend the predictive capability for magnetic material properties.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report includes a compilation of several slide presentations: 1) Interatomic Potentials for Materials Science and Beyond–Advances in Machine Learned Spectral Neighborhood Analysis Potentials (Wood); 2) Agile Materials Science and Advanced Manufacturing through AI/ML (de Oca Zapiain); 3) Machine Learning for DFT Calculations (Rajamanickam); 4) Structure-preserving ML discovery of a quantum-to-continuum codesign stack (Trask); and 5) IBM Overview of Accelerated Discovery Technology (Pitera)
Journal of Physical Chemistry A
The coupling of inter- and intramolecular vibrations plays a critical role in initiating chemistry during the shock-to-detonation transition in energetic materials. Herein, we report on the subpicosecond to subnanosecond vibrational energy transfer (VET) dynamics of the solid energetic material 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) by using broadband, ultrafast infrared transient absorption spectroscopy. Experiments reveal VET occurring on three distinct time scales: subpicosecond, 5 ps, and 200 ps. The ultrafast appearance of signal at all probed modes in the mid-infrared suggests strong anharmonic coupling of all vibrations in the solid, whereas the long-lived evolution demonstrates that VET is incomplete, and thus thermal equilibrium is not attained, even on the 100 ps time scale. Density functional theory and classical molecular dynamics simulations provide valuable insights into the experimental observations, revealing compression-insensitive time scales for the initial VET dynamics of high-frequency vibrations and drastically extended relaxation times for low-frequency phonon modes under lattice compression. Mode selectivity of the longest dynamics suggests coupling of the N-N and axial NO2stretching modes with the long-lived, excited phonon bath.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Fusion
Erosion of the beryllium first wall material in tokamak reactors has been shown to result in transport and deposition on the tungsten divertor. Experimental studies of beryllium implantation in tungsten indicate that mixed W–Be intermetallic deposits can form, which have lower melting temperatures than tungsten and can trap tritium at higher rates. To better understand the formation and growth rate of these intermetallics, we performed cumulative molecular dynamics (MD) simulations of both high and low energy beryllium deposition in tungsten. In both cases, a W–Be mixed material layer (MML) emerged at the surface within several nanoseconds, either through energetic implantation or a thermally-activated exchange mechanism, respectively. While some ordering of the material into intermetallics occurred, fully ordered structures did not emerge from the deposition simulations. Targeted MD simulations of the MML to further study the rate of Be diffusion and intermetallic growth rates indicate that for both cases, the gradual re-structuring of the material into an ordered intermetallic layer is beyond accessible MD time scales(≤1 μs). However, the rapid formation of the MML within nanoseconds indicates that beryllium deposition can influence other plasma species interactions at the surface and begin to alter the tungsten material properties. Therefore, beryllium deposition on the divertor surface, even in small amounts, is likely to cause significant changes in plasma-surface interactions and will need to be considered in future studies.
Physics of Plasmas
Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn-Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ∼ 20 %.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Fusion
One of the most severe obstacles to increasing the longevity of tungsten-based plasma facing components, such as divertor tiles, is the surface deterioration driven by sub-surface helium bubble formation and rupture. Supported by experimental observations at PISCES, this work uses molecular dynamics simulations to identify the microscopic mechanisms underlying suppression of helium bubble formation by the introduction of plasma-borne beryllium. Simulations of the initial surface material (crystalline W), early-time Be exposure (amorphous W-Be) and final WBe2 intermetallic surfaces were used to highlight the effect of Be. Significant differences in He retention, depth distribution and cluster size were observed in the cases with beryllium present. Helium resided much closer to the surface in the Be cases with nearly 80% of the total helium inventory located within the first 2 nm. Moreover, coarsening of the He depth profile due to bubble formation is suppressed due to a one-hundred fold decrease in He mobility in WBe2, relative to crystalline W. This is further evidenced by the drastic reduction in He cluster sizes even when it was observed that both the amorphous W-Be and WBe2 intermetallic phases retain nearly twice as much He during cumulative implantation studies.
Abstract not provided.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
The application of deep learning toward discovery of data-driven models requires careful application of inductive biases to obtain a description of physics which is both accurate and robust. We present here a framework for discovering continuum models from high fidelity molecular simulation data. Our approach applies a neural network parameterization of governing physics in modal space, allowing a characterization of differential operators while providing structure which may be used to impose biases related to symmetry, isotropy, and conservation form. Here, we demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows. For the flow physics we demonstrate this approach leads to a learned operator that generalizes to system characteristics not included in the training sets, such as variable particle sizes, densities, and concentration.
Abstract not provided.
Energy transfer through anharmonically-coupled vibrations influences the earliest chemical steps in shockwave-induced detonation in energetic materials. A mechanistic description of vibrational energy transfer is therefore necessary to develop predictive models of energetic material behavior. We performed transient broadband infrared spectroscopy on hundreds of femtoseconds to hundreds of picosecond timescales as well as density functional theory and molecular dynamics simulations to investigate the evolution of vibrational energy distribution in thin film samples of pentaerythritol tetranitrate (PETN) , 1,3,5 - trinitroperhydro - 1,3,5 - triazine (RDX) , and 2,4,6 - triamino 1,3,5 - trinitrobenzene (TATB). Experimental results show dynamics on multiple timescales, providing strong evidence for coupled vibrations in these systems, as well as material-dependent evolution on tens to hundreds of picosecond timescales. Theoretical results also reveal pathways and distinct timescales for energy transfer through coupled vibrations in the three investigated materials, providing further insight into the mechanistic underpinnings of energy transfer dynamics in energetic material sensitivity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of ML-IAPs based on four local environment descriptors --- Behler-Parrinello symmetry functions, smooth overlap of atomic positions (SOAP), the Spectral Neighbor Analysis Potential (SNAP) bispectrum components, and moment tensors --- using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model, and consequently computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.