IMoFi - Intelligent Model Fidelity: Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2021 IEEE Madrid PowerTech, PowerTech 2021 - Conference Proceedings
High penetration of solar photovoltaics can have a significant impact on the power flows and voltages in distribution systems. In order to support distribution grid planning, control and optimization, it is imperative for utilities to maintain an accurate database of the locations and sizes of PV systems. This paper extends previous work on methods to estimate the location of PV systems based on knowledge of the distribution network model and availability of voltage magnitude measurement streams. The proposed method leverages the expected impact of solar injection variations on the circuit voltage and takes into account the operation and impact of changes in voltage due to discrete voltage regulation equipment (VRE). The estimation model enables determining the most likely location of PV systems, as well as voltage regulator tap and switching capacitors state changes. The method has been tested for individual and multiple PV system, using the Chi-Square test as a metric to evaluate the goodness of fit. Simulations on the IEEE 13-bus and IEEE 123-bus distribution feeders demonstrate the ability of the method to provide consistent estimations of PV locations as well as VRE actions.
Conference Record of the IEEE Photovoltaic Specialists Conference
Renewable energy has become a viable solution for reducing the harmful effects that fossil fuels have on our environment, prompting utilities to replace traditional synchronous generators (SG) with more inverter-based devices that can provide clean energy. One of the biggest challenges utilities are facing is that by replacing SG, there is a reduction in the systems' mechanical inertia, making them vulnerable to frequency instability. Grid-forming inverters (GFMI) have the ability to create and regulate their own voltage reference in a manner that helps stabilize system frequency. As an emerging technology, there is a need for understanding their dynamic behavior when subjected to abrupt changes. This paper evaluates the performance of a GFMI when subjected to voltage phase jump conditions. Experimental results are presented for the GFMI subjected to both balanced and unbalanced voltage phase jump events in both P/Q and V/f modes.
Conference Record of the IEEE Photovoltaic Specialists Conference
High penetration of distributed energy resources presents challenges for monitoring and control of power distribution systems. Some of these problems might be solved through accurate monitoring of distribution systems, such as what can be achieved with distribution system state estimation (DSSE). With the recent large-scale deployment of advanced metering infrastructure associated with existing SCADA measurements, DSSE may become a reality in many utilities. In this paper, we present a sensitivity analysis of DSSE with respect to phase mislabeling of single-phase service transformers, another class of errors distribution system operators are faced with regularly. The results show DSSE is more robust to phase label errors than a power flow-based technique, which would allow distribution engineers to more accurately capture the impacts and benefits of distributed PV.
Conference Record of the IEEE Photovoltaic Specialists Conference
In order to address the recent inclement weather-related energy events, electricity production is experiencing an important transition from conventional fossil fuel based resources to the use of Distributed Energy Resources (DER), providing clean and renewable energy. These DERs make use of power electronic based devices that perform the energy conversion process required to interface with the utility grids. For the particular cases where DC/AC conversion is required, grid-forming inverters (GFMI) are gaining popularity over their grid-following (GFLI) counterpart. This is due to the fact that GFMI do not require a dedicated Phase Locked Loop (PLL) to synchronize with the grid. The absence of a PLL allows GFMI to operate in stand-alone (off-grid) mode when needed. Nowadays, inverter manufacturers are already offering several products with grid-forming capabilities. However, modeling the dynamics of commercially available GFMI under heavy loads or faults scenarios has become a critical task not only for stability studies, but also for coordination and protection schemes in power grids (or microgrids) that are experiencing a steady growth in their levels of DERs. Based upon experimental low-impedance fault results performed on a commercially available GFMI, this paper presents a modeling effort to replicate the dynamics of such inverters under these abnormal scenarios. The proposed modeling approach relies on modifying previously developed GFMI models, by adding the proper dynamics, to match the current and voltage transient behavior under low-impedance fault scenarios. For the first inverter tested, a modified CERTS GFMI model provides matching transient dynamics under faults scenarios with respect to the experimental results from the commercially available inverter.
Conference Record of the IEEE Photovoltaic Specialists Conference
Grid support functionalities from advanced PV inverters are increasingly being utilized to help regulate grid conditions and enable high PV penetration levels. To ensure a high degree of reliability, it is paramount that protective devices respond properly to a variety of fault conditions. However, while the fault response of PV inverters operating at unity power factor has been well documented, less work has been done to characterize the fault contributions and impacts of advanced inverters with grid support enabled under conditions like voltage sags and phase angle jumps. To address this knowledge gap, this paper presents experimental results of a three-phase photovoltaic inverter's response during and after a fault to investigate how PV systems behave under fault conditions when operating with and without a grid support functionality (autonomous Volt-Var) enabled. Simulations were then conducted to quantify the potential impact of the experimental findings on protection systems. It was observed that fault current magnitudes across several protective devices were impacted by non-unity power factor operating conditions, suggesting that protection settings may need to be studied and updated whenever grid support functions are enabled or modified.
Conference Record of the IEEE Photovoltaic Specialists Conference
Grid support functionalities from advanced PV inverters are increasingly being utilized to help regulate grid conditions and enable high PV penetration levels. To ensure a high degree of reliability, it is paramount that protective devices respond properly to a variety of fault conditions. However, while the fault response of PV inverters operating at unity power factor has been well documented, less work has been done to characterize the fault contributions and impacts of advanced inverters with grid support enabled under conditions like voltage sags and phase angle jumps. To address this knowledge gap, this paper presents experimental results of a three-phase photovoltaic inverter's response during and after a fault to investigate how PV systems behave under fault conditions when operating with and without a grid support functionality (autonomous Volt-Var) enabled. Simulations were then conducted to quantify the potential impact of the experimental findings on protection systems. It was observed that fault current magnitudes across several protective devices were impacted by non-unity power factor operating conditions, suggesting that protection settings may need to be studied and updated whenever grid support functions are enabled or modified.
Conference Record of the IEEE Photovoltaic Specialists Conference
Recent trends in PV economics and advanced inverter functionalities have contributed to the rapid growth in PV adoption; PV modules have gotten much cheaper and advanced inverters can deliver a range of services in support of grid operations. However, these phenomena also provide conditions for PV curtailment, where high penetrations of distributed PV often necessitate the use of advanced inverter functions with VAR priority to address abnormal grid conditions like over- and under-voltages. This paper presents a detailed energy loss analysis, using a combination of open-source PV modeling tools and high-resolution time-series simulations, to place the magnitude of clipped and curtailed PV energy in context with other operational sources of PV energy loss. The simulations were conducted on a realistic distribution circuit, modified to include utility load data and 341 modeled PV systems at 25% of the customer locations. The results revealed that the magnitude of clipping losses often overshadows that of curtailment but, on average, both were among the lowest contributors to total annual PV energy loss. However, combined clipping and curtailment loss are likely to become more prevalent as recent trends continue.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Power and Energy Magazine
This article is the first in a two-part series on the influence of inverter-based resources (IBRs) s on microgrid protection. In part one, the focus is on microgrids deployed on radial circuits. This article discusses some of the challenges related to the protection of IBR-based microgrids and presents some ongoing research and solutions in the area. The different controls for IBRs are discussed to present how their short current signatures and dynamic response under faults impact microgrid protection. Recently, microgrids have gained much attention in the electric power industry due to their capability for improving power system reliability and resiliency, their impact on increasing the use of renewable resources, the reduced cost of distributed energy resource (DER) equipment, and the continuing evolution of applicable codes and standards.
Abstract not provided.
2020 52nd North American Power Symposium, NAPS 2020
The integration of renewable and distributed energy resources to the electric power system is expected to increase, particularly at the distribution level. As a consequence, the grid will become more modular consisting of many interconnected microgrids. These microgrids will likely evolve from existing distribution feeders and hence be unbalanced in nature. As the world moves towards cleaner and distributed generation, microgrids that are 100% inverter sourced will become more commonplace. To increase resiliency and reliability, these microgrids will need to operate in both grid-connected and islanded modes. Protection and control of these microgrids needs to be studied in real-time to test and validate possible solutions with hardware-in-the-loop (HIL) and real communication delays. This paper describes the creation of a real-time microgrid test bed based on the IEEE 13-bus distribution system using the RTDS platform. The inverter models with grid-forming and grid-following control schemes are discussed. Results highlighting stable operation, power sharing, and fault response are shown.
2020 52nd North American Power Symposium, NAPS 2020
The goal of this paper is to utilize machine learning (ML) techniques for estimating the distribution circuit topology in an adaptive protection system. In a reconfigurable distribution system with multiple tie lines, the adaptive protection system requires knowledge of the existing circuit topology to adapt the correct settings for the relay. Relays rely on the communication system to identify the latest status of remote breakers and tie lines. However, in the case of communication system failure, the performance of adaptive protection system can be significantly impacted. To tackle this challenge, the remote circuit breakers and tie lines' status are estimated locally at a relay to identify the circuit topology in a reconfigurable distribution system. This paper utilizes Support Vector Machine (SVM) to forecast the status of remote circuit breakers and identify the circuit topology. The effectiveness of proposed approach is verified on two sample test systems.
Abstract not provided.
2021 IEEE Power and Energy Conference at Illinois, PECI 2021
The use of grid-edge sensing in distribution model calibration is a significant aid in reducing the time and cost associated with finding and correcting errors in the models. This work proposes a novel method for the phase identification task employing correlation coefficients on residential advanced metering infrastructure (AMI) combined with additional sensors on the medium-voltage distribution system to enable utilities to effectively calibrate the phase classification in distribution system models algorithmically. The proposed method was tested on a real utility feeder of ∼800 customers that includes 15-min voltage measurements on each phase from IntelliRupters® and 15-min AMI voltage measurements from all customers. The proposed method is compared with a standard phase identification method using voltage correlations with the substation and shows significantly improved results. The final phase predictions were verified to be correct in the field by the utility company.