Publications

Publications / Conference Paper

Estimation of PV Location based on Voltage Sensitivities in Distribution Systems with Discrete Voltage Regulation Equipment

Gomez-Peces, Cristian; Grijalva, Santiago; Reno, Matthew J.; Blakely, Logan

High penetration of solar photovoltaics can have a significant impact on the power flows and voltages in distribution systems. In order to support distribution grid planning, control and optimization, it is imperative for utilities to maintain an accurate database of the locations and sizes of PV systems. This paper extends previous work on methods to estimate the location of PV systems based on knowledge of the distribution network model and availability of voltage magnitude measurement streams. The proposed method leverages the expected impact of solar injection variations on the circuit voltage and takes into account the operation and impact of changes in voltage due to discrete voltage regulation equipment (VRE). The estimation model enables determining the most likely location of PV systems, as well as voltage regulator tap and switching capacitors state changes. The method has been tested for individual and multiple PV system, using the Chi-Square test as a metric to evaluate the goodness of fit. Simulations on the IEEE 13-bus and IEEE 123-bus distribution feeders demonstrate the ability of the method to provide consistent estimations of PV locations as well as VRE actions.