Publications

Results 1–25 of 196

Search results

Jump to search filters

Hugoniot, sound speed, and phase transitions of single-crystal sapphire for pressures 0.2–2.1 TPa

Physical Review. B

McCoy, C.A.; Kalita, Patricia K.; Knudson, Marcus D.; Desjarlais, Michael P.; Duwal, Sakun D.; Root, Seth R.

Sapphire (Al2O3) is a major constituent of the Earth's mantle and has significant contributions to the field of high-pressure physics. Constraining its Hugoniot over a wide pressure range and identifying the location of shock-driven phase transitions allows for development of a multiphase equation of state and enables its use as an impedance-matching standard in shock physics experiments. In this paper we present measurements of the principal Hugoniot and sound velocity from direct impact experiments using magnetically launched flyers on the Z machine at Sandia National Laboratories. The Hugoniot was constrained for pressures from 0.2–2.1 TPa and a four-segment piecewise linear shock-velocity–particle-velocity fit was determined. First-principles molecular dynamics simulations were conducted and agree well with the experimental Hugoniot. Sound-speed measurements identified the onset of melt between 450 and 530 GPa, and the Hugoniot fit refined the onset to 525 ± 13 GPa. A phase diagram which incorporates literature diamond-anvil cell data and melting measurements is presented.

More Details

Dynamic high pressure phase transformation of ZrW2O8

AIP Advances

Bishop, Sean R.; Lowry, Daniel R.; Peretti, Amanda S.; Laros, James H.; Knudson, Marcus D.; Sarracino, Alex; Mahaffey, Jacob T.; Murray, Shannon E.

Phase transformations under high strain rates (dynamic compression) are examined in situ on ZrW2O8, a negative thermal expansion ternary ceramic displaying polymorphism. Amorphization, consistent with prior quasi-static measurements, was observed at a peak pressure of 3.0 GPa under dynamic conditions, which approximate those expected during fabrication. Evidence of partial amorphization was observed at lower pressure (1.8 GPa) that may be kinetically restrained by the short (<∼150 ns) time scale of the applied high pressure. The impact of kinetics of pressure-induced amorphization from material fabrication methods is briefly discussed.

More Details

Hugoniot, sound speed, and phase transitions of single-crystal sapphire for pressures 0.2-2.1 TPa

Physical Review B

McCoy, C.A.; Laros, James H.; Knudson, Marcus D.; Desjarlais, Michael P.; Duwal, Sakun D.; Root, Seth R.

Sapphire (Al2O3) is a major constituent of the Earth's mantle and has significant contributions to the field of high-pressure physics. Constraining its Hugoniot over a wide pressure range and identifying the location of shock-driven phase transitions allows for development of a multiphase equation of state and enables its use as an impedance-matching standard in shock physics experiments. Here, we present measurements of the principal Hugoniot and sound velocity from direct impact experiments using magnetically launched flyers on the Z machine at Sandia National Laboratories. The Hugoniot was constrained for pressures from 0.2-2.1 TPa and a four-segment piecewise linear shock-velocity-particle-velocity fit was determined. First-principles molecular dynamics simulations were conducted and agree well with the experimental Hugoniot. Sound-speed measurements identified the onset of melt between 450 and 530 GPa, and the Hugoniot fit refined the onset to 525±13 GPa. A phase diagram which incorporates literature diamond-anvil cell data and melting measurements is presented.

More Details

Ti-6Al-4V to over 1.2 TPa: Shock Hugoniot experiments, ab initio calculations, and a broad-range multiphase equation of state

Physical Review B

Laros, James H.; Cochrane, Kyle C.; Knudson, Marcus D.; Ao, Tommy A.; Blada, Caroline B.; Jackson, Jerry; Gluth, Jeffry; Hanshaw, Heath L.; Scoglietti, Edward; Crockett, Scott D.

Titanium alloys are used in a large array of applications. In this work we focus our attention on the most used alloy, Ti-6Al-4V (Ti64), which has excellent mechanical and biocompatibility properties with applications in aerospace, defense, biomedical, and other fields. Here we present high-fidelity experimental shock compression data measured on Sandia's Z machine. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa. We use the data to validate our ab initio molecular dynamics simulations and to develop a highly reliable, multiphase equation of state (EOS) for Ti64, spanning a broad range of temperature and pressures. The first-principles simulations show very good agreement with Z data and with previous three-stage gas gun data from Sandia's STAR facility. The resulting principal Hugoniot and the broad-range EOS and phase diagram up to 10 TPa and 105 K are suitable for use in shock experiments and in hydrodynamic simulations. The high-precision experimental results and high-fidelity simulations demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modeled.

More Details

Shock compression of poly(methyl methacrylate) PMMA in the 1000 GPa regime: Z machine experiments

Journal of Applied Physics

Laros, James H.; Knudson, Marcus D.; Ao, Tommy A.; Blada, Caroline B.; Jackson, Jerry; Gluth, Jeffry; Hanshaw, Heath L.; Scoglietti, Edward

Hydrocarbon polymers are used in a wide variety of practical applications. In the field of dynamic compression at extreme pressures, these polymers are used at several high energy density (HED) experimental facilities. One of the most common polymers is poly(methyl methacrylate) or PMMA, also called Plexiglass® or Lucite®. Here, we present high-fidelity, hundreds of GPa range experimental shock compression data measured on Sandia's Z machine. We extend the principal shock Hugoniot for PMMA to more than threefold compression up to 650 GPa and re-shock Hugoniot states up to 1020 GPa in an off-Hugoniot regime, where experimental data are even sparser. These data can be used to put additional constraints on tabular equation of state (EOS) models. The present results provide clear evidence for the need to re-examine the existing tabular EOS models for PMMA above ∼120 GPa as well as perhaps revisit EOSs of similar hydrocarbon polymers commonly used in HED experiments investigating dynamic compression, hydrodynamics, or inertial confinement fusion.

More Details

LDRD 226360 Final Project Report: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis

Ao, Tommy A.; Donohoe, Brendan D.; Martinez, Carianne M.; Knudson, Marcus D.; Montes de Oca Zapiain, David M.; Morgan, Dane; Rodriguez, Mark A.; Lane, James M.

This report is the final documentation for the one-year LDRD project 226360: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis. As Sandia has successfully developed in-house X-ray diffraction tools for study of atomic structure in experiments, it has become increasingly important to develop computational analysis methods to support these experiments. When dynamically compressed lattices and orientations are not known a priori, the identification requires a cumbersome and sometimes intractable search of possible final states. These final states can include phase transition, deformation and mixed/evolving states. Our work consists of three parts: (1) development of an XRD simulation tool and use of traditional data science methods to match XRD patterns to experiments; (2) development of ML-based models capable of decomposing and identifying the lattice and orientation components of multicomponent experimental diffraction patterns; and (3) conducting experiments which showcase these new analysis tools in the study of phase transition mechanisms. Our target material has been cadmium sulfide, which exhibits complex orientation-dependent phase transformation mechanisms. In our current one-year LDRD, we have begun the analysis of high-quality c-axis CdS diffraction data from DCS and Thor experiments, which had until recently eluded orientation identification.

More Details
Results 1–25 of 196
Results 1–25 of 196